Chemistry Class-XII (CHSE)

SCHEDULED CASTES & SCHEDULED TRIBES RESEARCH & TRAINING INSTITUTE (SCSTRTI) ST & SC DEVELOPMENT DEPARTMENT BHUBANESWAR

CHEMISTRY

WORKBOOK-CUM-QUESTION BANK WITH ANSWERS

CLASS - XII (CHSE)

Compiled by :

Dr. Uttam Kumar Biswal

Reader in Chemistry (Retd.) B. J. B. (Autonomous) College, Bhubaneswar

ST & SC DEVELOPMENT DEPARTMENT GOVERNMENT OF ODISHA

Prepared by

SCHEDULED CASTES SCHEDULED TRIBES RESEARCH AND TRAINING INSTITUTE BHUBANESWAR-751003

2022

CHEMISTRY

for 2nd year Science

Cours	se Structure	
Unit	Title	Marks
I	Solid State	
I	Solutions	
III	Electrochemistry	23
IV	Chemical Kinetics	
V	Surface Chemistry	
VI	Isolation of Elements	
VII	p-Block Elements	
VIII	d- and f- Block Elements	19
IX	Coordination Compounds	
Х	Haloalkanes and Haloarenes	
XI	Alcohols, Phenols and Ethers	
XII	Aldehydes, Ketones and Carboxylic Acids	
XIII	Organic Compounds containing Nitrogen	28
XIV	Biomolecules	
XV	Polymers	

XVI Chemistry in Everyday Life

Unit I: Solid State

Classification of solids based on different binding forces: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea). Unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties. Band theory of metals, conductors, semiconductors and insulators and n & p type semiconductors.

Total 70

Unit II: Solutions

Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties - relative lowering of vapour pressure, Raoult's law, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass, van't Hoff factor.

Unit III: Electrochemistry

Redox reactions, electrolytes and non-electrolyte conductor, conductance in electrolytic solutions, specific and molar conductivity, variation of conductivity with concentration, Kohlrausch's law, electrolysis and laws of electrolysis (elementary idea),

dry cell electrolytic cells and Galvanic cells, lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, Relation between

Gibbs energy change and emf of a cell, fuel cells, corrosion.

Unit IV: Chemical Kinetics

Rate of a reaction (Average and instantaneous), factors affecting rate of reaction: concentration, temperature, catalyst, order and molecularity of a reaction, rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions), concept of collision theory (elementary idea, no mathematical treatment). Activation energy, Arrhenius equation.

Unit V: Surface Chemistry

Adsorption - physisorption and chemisorption, factors affecting adsorption of gases on solids, catalysts, homogenous and heterogenous activity and selectivity; enzyme catalysts colloidal state distinction between true solutions, colloids and suspension; lyophilic, lyophobic multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation, emulsion - types of emulsions.

Unit VI: General Principles and Processes of Isolation of Elements

Principles and methods of extraction - concentration, oxidation, reduction - electrolytic method and refining; occurrence and principles of extractionof aluminium, copper, zinc and iron.

Unit VII: p - Block Elements

Group15 Elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; nitrogen preparation properties & uses; compounds of nitrogen, preparation and properties of ammonia and nitric acid, oxides of nitrogen (Structure only); Phosphorus - allotropic forms, compounds of phosphorus: preparation and properties of phosphine, halides PCl₃, PCl₅ and oxoacids (elementary idea only).

Group 16 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties, dioxygen: Preparation, Properties and uses, classification of oxides, Ozone, Sulphur allotropic forms; compounds of sulphur: Preparation properties and uses of sulphur - dioxide, sulphuric acid: industrial process of manufacture, properties and uses; oxoacids of sulphur (Structures

only).

Group 17 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens, Preparation properties and uses of chlorine and hydrochloric acid, interhalogen compounds, oxoacids of halogens (structure only).

Group 18 Elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.

Unit VIII: d and f Block Elements

General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in proerties of the first row transition metals - metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic

properties, interstitial compounds, alloy formation, preparation and properties of $K_2 Cr_2 O_7$ and $KMnO_4$.

Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences.

Actinoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences.

Actinoids - Electronic configuration, oxidation states and comparison with lathanoids.

Unit IX: Coordination Compounds

Coordination compounds - Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds. Bonding, Werner's therory, VBT and CFT; structure and stereoisomerism, importance of coordination compounds (in qualitative analysis, extraction of metals and biological system).

Unit X: Haloalkanes and Haloarenes

Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions, optical rotation.

Haloarenes: Nature of C - X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only.

Uses and environmental effects of - dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT, BHC.

Unit XI: Alcohols, Phenols and Ethers

Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration, uses with special reference to methanol and ethanol.

Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols. Eithers :Nomenclature, methods of preparation physical and chemical properties uses.

Unit XII : Aldehydes, Ketones and Carboxylic Acids

Aldehydes and Ketones : Nomenclature nature of carbonyl group methods of preparation, physical and chemical properties, mechanism of nucleophillic addition reactivity of alpha hydrogen in aldehydes uses. Carboxylic Acids : Nomenclature, acidic nature, methods of preparation, physical and chemical properties uses.

Unit XIII : Organic compunds containing Nitrogen

Amines : Nomenclature classification, structure, methods of preparation, physical and chemical proporties, uses identification of primary, secondary and teritary amines.

Cyanide and Isocyanides-will be mentioned at relevant places in context Diazonium salt - Preparation, chemical reactions and importance in synthetic organic chemistry.

Unit XIV : Biomolecules

Carbohydrates - Classification(aldoses and ketoses) Monosaccahrides(glucose and fructose), D-L configuration oligosaccharides(sucrose, lactose, maltose) polysaccharides(starch, cellulose, glycogem) importance.

Proteins-Elementary idea of I- amino acids, peptide bond, polypeptide, proteins, structure of proteinsprimary secondary, teritary structure and quaternary structure(qualitative idea only), denaturation of proteins, enzymes, hormones-Elementary idea excluding structure

Vitamins-Classification and functions Nucleic Acids : DNA and RNA

Unit XV: Polymers

Classification-Natural and synthetic methods of polymerization(addition and condensation)co polymerization, some important polymers, natural and synthetic like polythene, nylon, polyester, bakelite, rubber, Biodegradable and non-biodegradable polymers.

Unit XVI : Chemistry in Everyday life

Chemical in Medicines- Angesics, traqulizers antiseptics, disinfectants, antimicrobials, antifertility, drugs, antibiotics, antacids, antihistamines.

Chemical in food-Preservations, artificial sweetening agents, elementary idea of antioxidants

Clensing agents-Soap and detergents, cleansing action.

Question Pattern :

Group - A

1.	МСQ Туре	[1x7]
2.	Very short answer type questions	[1x7]
	Group - B	
3.	Short answer type questions. (7 out of 10)	[2x7]
4.	Short answer type questions. (7 out of 10)	[3x7]
	Group - C	
5.	Long answer type questions. (3 out of 5)	[7x3]

Total Time - 3 Hours Full Marks - 70

CONTENTS

Type of Questions	Page
Very Short Answer Type Questions	
A1-Multiple Choice Questions	01
A2-Fill in the blanks	59
A3-Very short answer type questions	85
Short Answer Type Questions	139
Long answer type questions	286

Very Sort Answer Type Questions								
	Multiple Choice Question	s: Group-A(1)						
UNI	UNIT - I							
1.	The number of atoms/molecules present in or	he body centred cubic unit cell is:						
	(a) 1 (b) 2	(c) 4 (d) 6						
2.	Wax is an example of:							
	(a) Ionic crystal	(b) Covalent crystal						
	(c) Molecular crystal	(d) Metallic crystal						
3.	In a crystal, the atoms are located at the posit	ion of potential energy.						
	(a) Zero (b) Infinite	(c) Minimum (d) Maximum						
4.	In a solid lattice the cation has left a lattice sit	e and is located at an interstitial position.						
	The lattice defect is known as:							
	(a) Interstitial defect	(b) Valency defect						
	(c) Frenkel defect	(d) Schottky defect						
5.	Ionic solids with Schottky defects contain in t	heir structure:						
	(a) Equal number of cations and anion vaca	ncies						
	(b) Interstitial anions and anion vacancies							
	(c) Cation vacancies only							
	(d) Cation vacancies and interstitial cations							
6.	Which crystal has the largest lattice energy?							
	(a) KCl (b) MgO	(c) LiBr (d) NaF						
7.	A substance Ax By crystallies in fcc lattice in the substance of an P occupy the centre of an	which atom 'A' present each corner of						
	compound is –	ch lace of the cube. The formula of the						
	(a) AB (b) A B	(c) A B (d) AB						
8.	There are primitive and	centered unit cells						
	(a) 6,7 (b) 7,7	(c) 6, 6 (d) 7, 6						
9	The Bravais lattice where $a = b = c$, $\alpha - \beta$.	$x = 00^{0}$ is						
	The Dravals have where $a = b = c$, $a = p =$	$\gamma = 90$ is						
10	(a) cubic (b) Rhomboneded	(c) Inclinic (d) none of these						
10.	respectively	and axial angles are and						
	(a) $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	(b) $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$						
	(c) $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	(d) $a = b = c, \ \alpha = \beta = \gamma \neq 90^{\circ}$						
11.	A unit cell consists of a cube in which there a	re 'A' atoms at the corners and 'B' atoms						
	at the face centred and 'A' atoms are missing	ng from 2-corners in each unit cell. The						
	formula of the compound							
	(a) AB_3 (b) A_2B	(c) AB_4 (d) A_3B_4						
12.	Octahedral voids are present / unit cell of cc	o or fcc at						
	(a) at the body cube	(b) at the centre of each adge						
	(c) both (a) and (b)							
	(d) no. of octahedral void = no. of tetrahed	ral void.						

13.	In the ABAB - Pattern of packing (hcp) –				
	(a) Tetrahedral voids of second layer is covered				
	(b) fourth layer atom is aligned with 1st layer atom				
	(c) Octahedral voids of 2nd layer are cover	red in	3rd layer.		
	(d) both octahedral and tetrahedral voids an	re co	vered.		
14.	ABCABC type predicts stru	cture			
	(a) hcp (b) ccp	(c)	scp	(d)	none of these
15.	The co-ordination number one dimensional c	lose p	backing is		
	(a) 2 (b) four	(c)	six	(d)	zero
16.	What type of solid is p-nitrophenol?				
	(a) Ionic	(b)	covalent		
	(c) molecular	(d)	H-bonded m	olecu	lar solid
17.	Which of the following solid is considered as	liquio	d at all tempera	ture '	?
	(a) Quick lime (b) hornsilver	(c)	glass	(d)	gypsum
18.	Solid 'A' is very hard electrical insulater in so	lid as	well as molter	n state	e. It melts at very
	high temperature. What type of solid is it?				
	(a) Ionic	(b)	covalent (net	work)
	(c) Molecular	(d)	metallic		
19.	The number atoms per unit cell is, if cu	bic ba	ase unit cell hav	ving o	one atom on each
	corner and two atoms on each body diagonal $()$	l.	05	(1)	0.0
20	(a) 09 (b) 06	(c)	05	(d)	08
20.	The number of voids in ccp per unit cell is	$\left(\right)$	10	(1)	0.6
21	(a) 08 (b) 04	(c)	12	(d)	06
21.	Packing efficiency of ccp structure is	(0)	 52 /10/	(d)	70%
22	The type of cubic lattices to which iron cryst	al bel	0195 if the cell	has a	n edge length of
	268 pm and density of the crystal is 7.86 g/cm^3	(At w	t of Fe = 56 N	= 6	$0.2 \times 10^{23} \text{ mol}^{-1}$
	is	(110 %		A 0.	02×10 11101)
	(a) fcc	(b)	cubic		
	(c) bcc	(d)	end central c	ubic	
23.	A compound forms hcp structure. The total r	numb	er of voids per	mole	of it is
	(a) 1.806×10^{24} (b) 1.806×10^{23}	(c)	6.02×10^{23}	(d)	1.2×10^{24}
24.	Which of the following is not a consequence	ofFr	enkel defect?		
	(a) The electrical conductivity of crystal is e	expec	ted to increase	.	
	(b) The presence of holes decreases the sta	bility	of the crystal.		
	(c) Due to vacant sites the density decrease	es.			
25	(d) I ne dielectric constant in expected to in $K^+C^+(s)$ on treating in an atmosphere potassi	um v	anour looks		
23.	(a) violet (b) nink	(c)	vellow	(d)	white
26.	Which of the following does not occur on her	ating	ZnO?	(4)	Winte
	(a) It turns yellow on heating & white when	cold			
	(b) This is a case of metal excess defect.				
	(c) Can function as n-type semiconductor.				
	(d) The crystal becomes diamagnetic on hea	ating.			

27.	Choose the incorrect satement' from the following :						
	(a) \overline{e} in anion vacancy creates F-centre (F = Farbe)						
	(b) In defective ZnO, the Zn^{2+} ions occupy certain interstitial sites.						
	(c) Semico	onductors are p	produced due to im	purit	y defect.		
	(d) Condu	ctivity ionic so	lid can be explain	ed by	\overline{e} gas model.		
28.	'K' crystalis	es in bcc lattice	e. Hence the co-or	dinati	ion number of	elem	ent in the crystal
	structure is :						
	(a) 0	(b)	4	(c)	6	(d)	8
29.	Defective zin	nc oxide can be	e represented with	form	ula –		
	(a) ZnO	(b)	Zn _{1+x} O	(c)	ZnO _{1+x}	(d)	Zn O _{1+y}
30.	Nickel oxide	e has formula N	$\operatorname{Ni}_{0.98}\operatorname{O}_{1.00}$ with Ni ((II) ar	nd Ni(III). The	perc	entage of Ni ²⁺ is
	(a) 050	 _(h)	4 1	(a)	06.1	(4)	None of these
21	(a) 95.9	(D) a ionio radii ri	4.1	(C) 5 So	90.1 the co. ordin	(a) ation	None of these
51.	A Crystal lla		110 0.155 10 0.22	5. 50		ation	number win be
	(a) 3	(b)	4	(c)	6	(d)	8
32.	In a face cen	tred cubic latti	ce, a unit cell in sh	ared	equally by		no. of unit cells.
	(a) 4	(b)	2	(c)	6	(d)	8
UNI	Г - II						
33.	Molality is e	xpressed in :					
	(a) Grams/	(litre (b)	Litres/moles	(c)	Moles/litre	(d)	Moles/kg.
34.	The relative l	lowering in vap	our pressure is pro	porti	onal to the ration	o betv	ween the number
	of						
	(a) solute r	nolecules to so	lvent molecules				
	(b) solute r	molecules to th	e total number of r	nolec	ules in solutior	1	
	(c) solvent	molecules to t	he total number of	mole	ecules in solution	on	
	(d) solvent	molecules to t	he total number of	ions	in solution		0
35.	At 25°C, the	e highest osmo	tic pressure is expo	ected	by 0.1 M solu	tion (of:
	(a) $CaCl_2$	(b)	KCI	(c)	Glucose	(d)	Urea.
36.	Which of the	e following salt	s will have the sam	e val	ue of van't Ho	off fa	ctor (1) as that of
	$\mathbf{K}_{4}[\mathbf{FC}(\mathbf{CN})_{6}]$		NoC1	(a)	$\Lambda 1(NO)$	(4)	Na SO
27	(a) $\operatorname{Al}_2(SC)$	(0)	Inaci Inaci	(C) huto (1	$\operatorname{Al}(\operatorname{NO}_3)_3$	(\mathbf{u})	$\operatorname{Na}_2 \operatorname{SO}_4$
57.		1 11 [.]		iute (1	1101ai 111ass — 1	100)1	II 100 g 01 water
	is ΔI_b . The	ebullioscopic (constant for water	1S :			
	(a) 10	(b)	$10 \Delta T_{b}$	(c)	ΔT_{b}	(d)	$\Delta T_{b}/10$
38.	Which conce	entration term	is not affected by t	empe	rature?		
	(a) Norma	lity (b)	Molality	(c)	Molarity	(d)	Formality.
39.	A 5% soluti	on of cane sug	gar (molar mass =	= 342)) is isotonic w	ith 1	% solution of a
	substance X	. The molar ma	ass of X is :				
	(a) 171.2	(b)	68.4	(c)	34.2	(d)	136.2.
40.	Which has h	ighest boiling p	ooint under 1 atm p	oressu	ure?		
	(a) 0.1 M N	NaCl (b)	0.1 M Sucrose	(c)	$0.1\mathrm{M}\mathrm{BaCl}_2$	(d)	0.1 M Glucose.

41.	An aqueous solution freezes at -0.186°C (K_f = in boiling point ?	= 1.80	$6, K_{\rm b} = 0.512$). What is the elevation
	(a) 0.186 (b) 0.512	(c)	0.86 (d) 0.0512.
42.	For determination of the molar mass of colloid property is used ?	s, pol	ymers and proteins which colligative
	(a) Diffusion pressure	(b)	Atmospheric pressure
	(c) Osmotic pressure	(d)	Turgor pressure.
43.	Colligative properties of the solutions are tho	se pro	operties which depend on :
	(a) shapes of the particles	(b)	nature of the solvent
	(c) nature of the particles only	(d)	number of the particles only
44.	2.5 litres of 1M NaOH solution is mixed with	1 a 3.0	0 litres of 0.5 M NaOH solution.
	The molarity of the resulting solution is :	()	
45	(a) 0.80 M (b) 1.0 M	(C)	0.73 M (d) 0.50 M.
45.	aqueous KCl solution that could be used in bl	ood	stream?
	(a) $0.16 \mod L^{-1}$ (b) $0.32 \mod L^{-1}$	(c)	$0.60 \text{ mol } L^{-1}$ (d) $0.45 \text{ mol } L^{-1}$
46.	The van't Hoff factor for a solute that associa	tes in	solution is :
	(a) zero (b) 1.0	(c)	less than 1 (d) more than 1
47.	An aqueous solution freezes at $-0.186^{\circ}C \begin{pmatrix} k_{1} \\ k_{2} \end{pmatrix}$	s = 1. s = 0	$\begin{array}{c} 86 \mathrm{K} \mathrm{kg} \\ .512^{\mathrm{o}} \mathrm{C} \end{array} \end{array}$
	The boiling point of the solution will be	0	C
	(a) 100.186 (b) 100.512	(c)	100.86 (d) 100.512
48.	For an ideal solution of two volatile liquids (1 as :	& 2)	, the total vapour P _{total} is represented
	(a) $P_{total} = x_1 p_1^0 + x_2 p_2^0$	(b)	$P_{total} = p_1^0 + \left(p_2^0 - p_1^0\right) x_2$
	(c) The total vapour pressure over the solur one component	tion	varies linearly with mole fraction of
	(d) All are correctly represented.		
49.	Choose the incorrect statement :		
	(a) The composition of the vapour phase i.e	. abo	ve the solution obeys Dalton's law.
	(b) At equilibrium, vapour phase will be alw	vays r	rich in the component which is more
	volatile		
	(c) When $x_2 = 0$ the the vapour pressure r	epre	sents p_2^0 .
	(d) Higher the value of $K_{\rm H}$ at a given pressure	elow	er in the solubility of the gas in liquid.
50.	Increasing the temperature of an aqueous solu	tion	will cause
	(a) molality to decrease	(b)	molarity to decrease
	(c) mole fraction to decrease	(d)	wt % to increase
51.	The boiling point of equimolal aq. solution will	l be n	ninimum for
	(a) Benzene diazonium chloride	(b)	calcium nitrate
	(c) silver chloride	(d)	glucose

52.	An X molal solution of a compound in benzer The value of X is nearly	he has made fraction of solute equal to 0.2.
	(a) 62.4 (b) 7.0	(c) 0.016 (d) 2.6
53.	Molarity of liquid HCl if density is 1.17g/mis	5
	(a) 36.5 (b) 18.25	(c) 32.05 (d) 42.10
54.	The depression is freezing point, $\Delta T_{\rm f}$ is direct	tly propertional to
	(a) mole fraction of solution	(b) molarity of the solution
	(c) molality of the solution	(d) moles of the solvent
55.	Normality of 0.3 M phosphorous acid (H,P	O ₃) is
	(a) 0.5 (b) 0.6	(c) 0.9 (d) 0.1
56.	An azeotropic solution of two liquids has boil	ing point lower than either of two when it
	(a) shows a negative deviation from Roult's	slaw
	(b) shows no deviation from Roult's law	
	(c) shows positive deviation from Roult's la	W
	(d) is saturated	
57.	Benzoic acid undergoes dimerisation in benz	zene solution. The Vant's Half factor (i) is
	related to the degree of association (x) of the	e acid as
	(a) $i=(1-x)$ (b) $i=1+x$	(c) $i = \left(1 - \frac{x}{2}\right)$ (d) $1 = \left(1 + \frac{x}{2}\right)$
58	Which of the following 0.1 m ag solution will b	nave the lowest freezing point i e maximum
	ΔT_f ?	
	(a) Aluminium sulfate	(b) glucose
	(c) urea	(d) potassium iodide
59.	The volume of water to be added to 100 c.c. is cc.	of 0.5 N H_2SO_4 to get decinormal solution
	(a) 100 (b) 450	(c) 400 (d 500
60.	18 gram glucose, $C_6H_{12}O_6$ is dissolved in 1 kg of the solution is K.	g of water is a saucepan. The boiling point
	(a) 373.052 (b) 100.052	(c) 101 (d) 273
61.	The boiling point of benzene is 353.23K. When	1.80 g of non-volatile solute was dissolved
	in 90 gram benzene, the boiling point is raised	to 354.11 K. The molar mass of the solute
	is (Kb for benzene 2.53 K kg mol ⁻¹ .	
	(a) 57.5 (b) 56.5	(c) 5.57 (d) 157.5
62.	Which of the following is not the characterist	ic of ideal solution?
	(a) Δ_{mix} H=0	(b) Δ_{mix} V=0
	(c) A-A and B-B interaction \neq A-B intera	action
	(d) cohesive interaction is same as adhesive	interaction.
63.	Which of the following is not an ideal solution	n?
	(a) n-hexane, n-heptane	(b) Bromoethane and chloroethane
	(c) benzene and tolune	(d) Acetone and chloroform

UNI	IT - III		
64.	The mass of a substance liberated at the electro	dei	is directly proportional to its
	(a) atomic mass ((b)	equivalent mass
	(c) molecular mass ((d)	none of these
65.	Standard electrode potentials are :		
	Fe^{+2}/Fe , $E^0 = -0.44$; Fe^{+3}/Fe^{+2} , $E^0 = 0.77$		
	Fe^{+2} , Fe^{+3} and Fe block are kept together, then	l	
	(a) Fe^{+3} increases ((b)	Fe ³⁺ decreases
	(c) Fe^{+3} remains unchanged ((d)	Fe ⁺² decreases
66.	The unit of equivalent conductivity is		
	(a) $ohm^{-1} cm^2 (equivalent)^{-1}$ ((b)	ohm cm ² (g-equivalent)
	(c) $ohm cm^2$ ((d)	ohm ⁻¹ m ⁻¹
67.	The standard reduction potentials for Fe^{2+}/Fe a	und	Sn^{2+}/Sn electrodes are -0.44 V and
	-0.14 V respectively. The standard e.m.f of the	cel	with reaction.
	$Fe^{2+} + Sn \rightarrow Fe + Sn^{2+}$ is :		
60	(a) $+0.30$ V (b) -0.30 V (c)	(c)	+0.58 V (d) -0.58 V
68.	Total charge on 1 mole of a monovalent metal to	on 1	s equal to:
	(a) 9.65×10^4 coulombs ((b)	1.6×10^{-19} coulombs
60	(c) 6.2×10^{10} coulombs ((d)	none of these
69.	with 10 amperes current passed for 10 minutes	elec	trolysis of molten Sodium Chloride
	(a) 2.2 (b) 4.4 ((c)	3.8 (d) 5
70.	The unit of cell constant is ——		
	(a) $ohm^{-1} cm^2$ ((b)	cm ⁻¹
	(c) $ohm^{-1} cm^{1-}$ ((d)	ohm ⁻¹ cm ² /gm equiv
71.	96500 coulomb will deposit — of metal.		
	(a) one electrochemical equivalent ((b)	onegm
	(c) one gm equivalent ((d)	one gm molecular mass
72.	Four alkali metals A, B, C, D are having respec	ctiv	vely standard electrode potential as
	-3.05, -1.66, -0.8 and -0.40 V. Which one will	ill bo	e more reducing ?
	(a) A (b) B ((c)	C (d) D
73.	Given $1/a = 0.5$ cm ⁻¹ , R = 50 ohm, N = 1.0. The ed cell is	quiv	valent conductance of the electrolytic
	(a) $10 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1}$ ((b)	$20 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1}$
	(c) $300 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1}$ ((d)	$100 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1}$
74.	Which of the following expression is correct?		
	(a) $\Delta G^0 = -nFE^0_{cell}$ ((b)	$\Delta G^{0} = + n F E^{0}_{cell}$
	(c) $\Delta G^0 = -2.303 \mathrm{RTnFE}_{cell}^0$ ((d)	$\Delta G^{0} = -nF\log k_{C}$

75.	The reduction potential values of 'M', 'N' and 'O' are $+ 2.46, -1.13$ and $- 3.13$ V respectively. Which of the following order is correct regarding their reducing property?							
	(a)	O > N > M	(h)	O > M > N	(c)	M > N > O	(d)	M > O > N
76	Elec	trolytes conduct e	electric	rity due to movem	ent o	f	(u)	
/0.	(a)	atoms	(b)	ions	(c)	electrons	(d)	molecules
77	Whi	ich of the followin	g may	not be present in	all ga	lvanic cell ?	(4)	increation of the second secon
,,,,	(a)	electrolyte	(b) a	node	(c)	cathode	(d)	salt bridge
78.	The	metal with greater	r oxida	ation potential is				U
	(a)	stronger oxidant		1	(b)	stronger redu	ctant	
	(c)	easily reduced			(d)	can't be predi	icted	
79.	Whi	ich of the followin	g solu	tions can be store	d in c	opper vessel?		
	(a)	AgNO ₃	(b) A	uCl ₃	(c)	ZnCl,	(d)	allofthese
80.	Out	of Cu, Ag, Zn and	l Mg t	he metal which ca	n dis	place all others	s fron	n their aqueous
	salt	solution is						
	(a)	Cu	(b)	Zn	(c)	Ag	(d)	Mg
81.	For	a redox reaction t	o be s	pontaneous, the e	.m.f.	should be		
	(a)	-ve			(b)	+ve		
	(c)	zero			(d)	any one of th	ese	
82.	Pass elec	sage of 96500 co trolysis :	uloml	o of electricity lib	erate	s litre o	of O ₂	at NTP during
	(a)	5.6	(b)	6.5	(c)	22.2	(d)	11.2
83.	Whi	ch of the following	g state	ements is wrong?				
	(a)	Na ⁺ has different	t mola	r cunductance at i	nfinit	te dilution in Na	aCla	nd NaBr
	(b)	degree of dissoc	iation	$(a) = \frac{\Lambda_{\rm C}}{\Lambda_{\infty}}$				
	(c)	Kohlraush law is	sused	to find Λ_{∞} value f	òr we	eak electrolytes	5	
	(d)	$\mu_{\infty}(\mathrm{H}_{2}\mathrm{SO}_{4}) = 2$	$2\mu_{\infty}(\mathbf{I})$	$(\mathrm{H}^{+}) + \mu_{\infty}(\mathrm{SO}_{4}^{-2})$				
UNI	Г-Г	V						
84.	Whi	ich of the followin	g is co	prrect for a first or	der re	eaction?		
	(a)	$t_{1/2} \alpha a$	(b)	$t_{1/2} \alpha a$	(c)	$t_{1/2} \alpha a^0$	(d)	$t_{1/2} \alpha a^2$
85.	Foll reac	owing is the grapl tion at 27°C. Hen	h betw ice oro	ween $\log t_{1/2}$ and $\log t_{1/2}$ and $\log t_{1/2}$ and $\log t_{1/2}$	ga(a is	a = initial conce	entrat	tion) for a given
				$\log t_{1/2}$	50			
				1	u 6			
	(a)	0	(b)	1	(c)	2	(d)	3

86.	Consider the $2A + B \rightarrow$ Products			
	When concentration of B alone was doubled, the halflife did not change. When the			
	cone. of A alone was doubled, the rate increased by two times. The unit of the rate constant for the reaction is			
	(a) mol lit ⁻¹ sec ⁻¹ (b) s ⁻¹ (c) L mol ⁻¹ s ⁻¹ (d) no unit			
87.	The rate of a first order reaction is 1.5×10^{-2} mol L ⁻¹ min ⁻¹ at 0.5 M concentration of			
	the reactant the halflife of the reaction is			
	(a) 23.1 minutes (b) 8.73 minutes (c) 7.53 minutes (d) 0.383 minutes.			
88.	The rate constant for the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3.0 \times 10^{-5} S^{-1}$. If the rate is			
	2.4×10^{-6} mol lit s ⁻¹ , then the conc. of N ₂ O ₅ in (mol lit ⁻¹) is			
	(a) 1.4 (b) 1.2 (c) 0.04 (d) 0.8			
89.	In a first order reaction $A \rightarrow B$, if k is rate constant and initial concentration of the reactant A is 0.5, then the halflife is			
	(a) $\log 2$ (b) $\frac{\log 2}{\log 2}$ (c) $\ln 2$ (d) $\frac{0.693}{\log 2}$			
	(a) $\frac{k}{k}$ (b) $k\sqrt{0.5}$ (c) $\frac{k}{k}$ (d) $0.5k$			
90.	Which one of the following statement for order of reaction is not correct?			
	(a) Order can be determined experimentally			
	(b) Order of reaction is equal to the sum of the power of the concentration terms in differential rate law.			
	(c) It is not affected with stoichiometric coefficient of reactants			
	(d) Order reaction can be more than three.			
91.	A chemical reaction proceeds following formula $k = P Z e^{-Ea/RT}$. Which of the following			
	process will increase the rate of reaction ?			
	(a) Lowering of E _a (b) Lowering of P			
	(c) Lowering of Z (d) independent of all the above factor			
92.	The rate at which a substance reacts depends on its			
	(a) atomic mass (b) equivalent mass			
02	(c) Molecular mass (d) active mass			
93.	According to collision theory			
	 (a) all collisions are responsible for product formation 			
	(c) all collisions are effective			
	(d) only a fraction of collisions are effective which have enough energy to form products.			
94.	For the reaction A \longrightarrow B, the rate of the reaction is quadrupled when the concentration			
	of A is double, the rate of the reaction is $r = k [A]^n$, the value of 'n' is			
	(a) 1 (b) zero (c) 3 (d) 2			
95.	A zero order reaction is one			
	 (a) In which the reactants do not react. (b) in which one of the reactants is large excess 			
	(c) Whose rate is uniform and not affected by time.			
	(d) whose rate inceases with time			
1				

In a first order reaction, the concentration of reactant decreases from 1.0 M to 0.25 M 96. in 20 minutes. The value of specific rate is (a) 69.32 (d) 0.06932 (b) 6.932 (c) 0.6932 Which plot can give us the value of activation energy? 97. (b) $\frac{1}{k}$ versus T (c) log k versus $\frac{1}{T}$ (d) C versus T. (a) k versus T Activation energy of a chemical reaction can be determined by (a) changing the cncentration of reactants (b) evaluating rate constant at standard temperature (c) evaluating rate constants at two different temperatures (d) evaluating velosities of reaction at two different temperatures. $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$ 99. What is the ratio of the rate of decomposition of N_2O_5 to the rate of formation of NO_2 ? (a) 112 (b) 2:1 (c) 1:4 (d) 4:1 100. By increasing temperature by 10 K, the rate of reaction becomes double. How many times the rate of reaction will be if the temperature is increased from 303 K to 353 K? (a) 4 (b) 8 (c) 16 (d) 32 101. The elementary step of the reaction $2Na + Cl_2 \rightarrow 2NaCl$ is found to follow a third order Kinetics. The molecularity of the reaction is (a) 1 (b) 2 (d) 4 (c) 3 102. 75% of a first order reaction was completed in 32 minutes; when was 50% of the reaction completed? (a) 4 minutes (b) 8 minutes (c) 24 minutes (d) 16 minutes 103. For the hypothetical reaction, $2A \rightarrow 3C$ the reaction rate is given by (a) $r = \frac{-d[A]}{dt}$ (b) $r = -\frac{1}{2}\frac{d[A]}{dt}$ (c) $r = \frac{1}{3}\frac{d[A]}{dt}$ (d) $r = \frac{d[A]}{dt}$ 104. Rate expression of a chemical change is $\frac{dx}{dt} = k[A]^2[B][C]^0$ The order of the reaction is (a) 2 (b) 3 (c) 1 (d) 0 105. The rate law for the single step reaction $2A + B \rightarrow 2C$ is given by (a) rate = k[A][B] (b) rate = k[A]²[B] (c) rate = k[A][B] (d) rate = [A]²[B]⁰ 106. What will be amount of ${}^{128}_{53}$ I ($t_{t/2} = 25$ minutes) left after 50 minutes ? (a) one half (b) one fourth (c) one third (d) one eighth 107. Time required to decompose half the substance for nth order reaction is inversely proportional to (a) $a^{1/2}$ (b) a^{n-2} (c) a^{n-1} (d) a^{n+1} 108. $T_{1/2}$ of C¹⁴ isotope is 5770 years. Time after which 80% of isotope left is (b) 186 years (c) 2780 years (d) 278 years (a) 1861 years

109.	. Temperature dependant equation can be written as				
	(a) $\ln k = \ln A - \frac{E_a}{RT}$	(b)	$\ln k = \ln A + \frac{E_a}{RT}$		
	(c) $\log k = \log A - \frac{RT}{E_a}$	(d)	All of the above		
110.	Rate of reaction depends upon				
	(a) temperature	(b)	catalyst		
	(c) concentration	(d)	allofthese		
111.	$t_{1/2}$ of first order reaction is				
	(a) directly proportional to initial concentra	tion			
	(b) independent of initial concentration				
	(c) directly proportional to square of initial	conce	entration		
	(d) inversely proportional to initial concent	ration.			
112.	Molecularity of a reaction is determined by				
	(a) stoichiometric representation of a react	ion.			
	(b) reaction of atoms				
	(c) both	(d)	none		
113.	In a reaction, $A \longrightarrow B$, if concentration of	fAis c	loubled, the rate of reaction		
	becomes 8 times. The order of reaction is :				
	(a) 1 (b) 2	(c)	3 (d) 1.5		
114.	Acidic hydrolysis of ester is an example of				
	(a) 1st order reaction	(b)	2nd order reaction		
	(c) zero order reaction	(d)	pseudo 1st order reaction		
115.	The unit of rate constant for zero order react	tion is			
	(a) \sec^{-1}	(b)	mole litr ⁻¹ sec ⁻¹		
	(c) mole ⁻¹ lit sec ⁻¹	(d)	mole ⁻¹ lit ⁻¹ sec ⁻¹		
116.	A catalyst has no effect on				
	(a) rate of forward reaction	(b)	activation energy		
	(c) threshold energy	(d)	heat of reaction		
Unit	- V				
117.	Tyndall effect is observed in :				
	(a) Solution (b) Precipitate	(c)	Sol (d) Vapours		
118.	Which is the characteristic of a catalyst?				
	(a) It changes equilibrium constant	(b)	It initiates a reaction		
	(c) It alters the rate of reaction				
110	(d) It increases average KE of molecules	. 1			
119.	A liquid is found to scatter a beam of light but the filter paper. The liquid can be described	it leav	es no residue when passed through		
	(a) A suspension	as. (h)	Oil		
	(c) Colloidal sol	(d)	True solution		
		(u)			

120.	0. Cloud is an example of:								
	(a) Solid dispersed in gas (b) Liquid dispersed in g	as							
	(c) Liquid dispersed in solid (d) Solid dispersed in liqu	uid							
121.	1. In physical adsorption, gas molecules are bound on the solid surface by :	. In physical adsorption, gas molecules are bound on the solid surface by :							
	(a) Chemical forces (b) Electrostatic forces								
	(c) Gravitational forces (d) van der Waals forces	5.							
122.	2. How many layers are involved in chemical adsorption?								
	(a) One (b) Two (c) Many (d) Z	Zero.							
123.	3. In the coagulation of colloidal sol of As_2S_3 which has minimum coagulating	ng value?							
	(a) NaCl (b) KCl (c) BaCl ₂ (d) A	AlCl ₃							
124.	4. In which of the following, electrophoresis is not observed.?								
	(a) Suspensions (b) Emulsions (c) Sugar solution (d) G	Gold sol.							
125.	5. Action of catalyst depends upon :								
	(a) mass (b) solubility (c) particle size (d) n	one of these.							
126.	6. At CMC, the surface molecules :								
	(a) Decompose (b) Become completely s	soluble							
	(c) Associate (d) Dissociate.								
127.	7. A biological catalyst is essentially :								
	(a) An enzyme (b) A carbohydrate								
	(c) An amino acid (d) A nitrogeneous base.								
128.	8. Which of the following is used for ending charge on colloidal solution?								
	(a) Electrolytes (b) Electrolytes								
1.00	(c) Positively charged ions (d) Compounds.								
129.	9. In colloidal particles, the range of diameter is :								
	(a) 1 to 100 nm (b) 1 to 1000 nm								
120	(c) I to 100 cm (d) I to 100 m .								
130.	U. Foam is an example of colloidal system of: () Q (1) (1) (2)								
121	(a) Gas in liquid (b) Liquid in gas, (c) Solid in liquid (d) L	Jiquia in liquia.							
131.	1. In the following, the hydrophobic colloid is:	a la bar							
122	(a) Starch (b) Getaun (c) Gum (d) S	Sulphur.							
132.	2. White can be preserved by adding a rew drops of (a) Earmin agid solution (b) Earmoldoly de solution	an							
	(a) A setia solution (b) Formatenyde solution (c) A setaldebyde solution	011							
122	(c) Active acta solution (d) Active acta solution	/11.							
155.	(a) scop (b) colluloso (c) protoin (d) col	rbon novydor							
13/	(a) soap (b) centrose (c) protein (d) can 4. Which of the following is not colloid?	i boli powdei							
134.	(a) Chlorophyll (b) Smoke (c) Milk (d) E	log							
135	5 Eag is a colloidal system of	Ug							
155.	(a) Liquid dispersed in gas (b) Gas dispersed in liqui	id							
	(c) Solid dispersed in liquid (d) Solid dispersed in aqu	IN IS							
136	6 Brownian movement is due to	15							
150.	(a) Temperature fluctuation within the liquid phase								
	(b) Attraction and repulsion between the charges on colloidal particles								
	(c) Impact of the molecules of the dispersion medium on colloidal partie	cles							
	(d) Convention current								
133.134.135.136.	 (c) Acetic acid solution (d) Acetaldehyde solutio 3. Which of the following is the example an associated colloid ? (a) soap (b) cellulose (c) protein (d) car 4. Which of the following is not colloid? (a) Chlorophyll (b) Smoke (c) Milk (d) F 5. Fog is a colloidal system of (a) Liquid dispersed in gas (b) Gas dispersed in liquid (c) Solid dispersed in liquid (d) Solid dispersed in gas 6. Brownian movement is due to (a) Temperature fluctuation within the liquid phase (b) Attraction and repulsion between the charges on colloidal particles (c) Impact of the molecules of the dispersion medium on colloidal particles 	on. rbon powder ⁷ og id is							

137.	Tyndal effect in the colloidal solution is due to)	
	(a) Scattering of light	(b)	Reflection of light
	(c) Absorption of light		
	(d) Presence of electrically charged particle	s	
138.	Which is an example of Emulsion?		
	(a) Jelly (b) Boot polish	(c)	Froth (d) Milk
139.	Which of the following is not a negatively cha	rged	sol?
	(a) gold sol (b) starch sol	(C)	cds sol (d) haemoglobin
140.	Cow milk is an example of natural emulsion,	it is st	abilised by
	(a) Fat (b) Water	(c)	Case in (d) Mg^{2+} ion
141.	Gelatine is mostly used in making ice creams	in orc	ler to
	(a) Prevent making of a colloid		
	(b) Stabilize the colloid and prevent crystalli	zatio	n
	(c) Stabilize the mixture	(d)	Enrich the arome.
142.	On adding a few drops of dil. HCl to fresh	ly pre	ecipitated Fe (OH), a red coloured
	colloidal solution is obtained. The phenomeno	on is l	known as
	(a) Peptization	(b)	Dialysin
	(c) Protective action	(d)	Dissolution
143.	Soap form colloidal solution in water and rem	noves	grease from clothes by
	(a) Coagulation	(b)	Emulsification
	(c) Adsorption	(d)	Absorption
144.	Lyophilic sols are		
	(a) Irreversible sols	(b)	prepared from inorganic compounds
	(c) coagulated by adding electrolyte	(d)	self- stabilizing
145.	Among the electrolytes Na_2SO_4 , $CaCl_2$, A	$l_2(SC)$	D_4) ₃ and NH ₄ Cl the most effective
	coagulating agent for Sb_2S_3 sol is		
	(a) Na_2SO_4 (b) $CaCl_2$	(c)	$Al_2(SO_4)_3$ (d) NH4Cl
146.	Adsorption is multilayer in case of		
	(a) Physical adsorption	(b)	Chemical adsorption
	(c) both physical and chemical adsorption	(d)	None
147.	The term sorption stands for		
	(a) Adsorption	(b)	Absorption
1.10	(c) Both adsorption and absorption	(d)	Desorption
148.	Adsorption is accompanied by		
	(a) Decrease in enthalpy and increase in ent	tropy	
	(b) Increase in enthalpy and increase in entr	ору	
	(c) Decrease in enthalpy and decrease in en	tropy	Ý
1.40	(d) No change in enthalpy or entropy	10	
149.	Which of the following is not correctly match	ed?	
	(a) Butter-Gel (b) Milk-emulsion	(c)	Fog-aerosol (d) Dust-solid sol
Unit	- VI		
150	Zone refining is used for the		
-	(a) Concentration of an ore	(b)	Reduction of metal oxide
	(c) Purification of metal	(d)	Purification of an ore
151	Which of the following processes is used for t	(u) the co	ncentration of Reputite 9
131.	(a) Erath floatation		
	(a) FIGHT HOUSE HOUSE (a)	(0)	Leaching
	(c) Liquation	(d)	Magnetic separation

152.	The earthy impurities associated with minera	lused	in metallurgy	are ca	illed?
	(a) Slag (b) Flux	(c)	Gangue	(d)	Ore
153.	In the electrorefining of copper, some gold is	s depo	sited as :		
	(a) Anode mud (b) Cathode mud	(c)	Cathode	(d)	Electrolyte
154.	Most abundant metal on the surface of earth	is :			
	(a) Iron (b) Aluminium	(c)	Calcium	(d)	Sodium
155.	The lustre of a metal is due to				
	(a) its high density	(b)	its high polish	ing	
	(c) its chemical inertness	(d)	presence of f	ree el	ectrons
156.	Which process is used for the purification of	Alme	etal?		
	(a) Hoop's process	(b)	Bayer's proc	ess	
	(c) Serpeak's process	(d)	Hall's proces	SS.	
157.	Which process represent the change,				
	$Ti + 2I_2 \rightarrow TiI_4 \rightarrow Ti + 2I_2$				
	(a) Cupellation (b) van Arkel	(c)	Poling	(d)	Zone refining
158.	The following equation represents a method	ofpur	ification of nic	kel by	Ι,
	$Ni + 2CO \xrightarrow{320K} Ni(CO)_4 \xrightarrow{420K} Ni +$	4CO			
	Impure Pure				
	(a) Cupellation	(b)	Mond's proc	ess	
	(c) van Arkel method	(d)	zone refining		
159.	Heating of pyrite ores in air to remove sulph	ur is k	nown as :		
	(a) Calcination (b) Fluxing	(c)	Smelting	(d)	Roasting
160.	Out of the following, which cannot be obtain the salt?	ed by	electrolysis of	aqueo	ous solution of
	(a) Ag (b) Mg	(c)	Cu	(d)	Cr
161.	The slag obtained during the extraction of co	pper j	pyrites is comp	osed	mainly of:
	(a) Cu_2S (b) $FeSiO_3$	(c)	CuSiO ₃	(d)	SiO ₂
162.	Which of the following is a mineral of iron?				
	(a) Malachite (b) Cassiterite	(c)	Pyrolusite	(d)	Magnetite
163.	The ore having two different metal atoms is				
	(a) haematite (b) galena	(c)	magnetite	(d)	Copperpyrite
164.	In which of the following minerals, aluminium	n is no	t present ?		
	(a) Cryolite (b) Mica	(c)	Feldspar	(d)	Fluospar
165.	In the froth floatation process for benefactio	nofth	ne ores, ore par	rticles	float because
	(a) they are light	(b)	they bear elec	ctrica	lcharge
	(c) their surface is not easily wetted by wat	ter (d)	they are insol	luble	
166.	Which of the following metal can be extracted	ed by s	melting?		
	(a) Al (b) Mg	(c)	Fe	(d)	None of these
167.	The most important element in the earth's cru	ust is	-		N 71
	(a) Oxygen (b) Mg	(c)	Fe	(d)	Nıtrogen

168.	After levigation an or be used as flux during	e is fo smelt	und to contain acid	lic im	purities. Which	hoft	he following can
	(a) $CaCO$		0 1	(h)	SiO		
	(a) Euco_3 (c) HCl			(d)	both $CaCO$	and (SiO
160	When lime stone is he	atad (CO is given off T	(u) ha m	otallurgical on	and a	nic
109.	$() \qquad \qquad$	aleuv	CO_2 is given on. T			-14110	11 15
	(a) Smelting			(b)	Reduction		
	(c) Calcination			(d)	Roasting		
170.	Which of the following	ıg pai	rs of metals is puri	fied b	y van Arkel me	ethod	?
	(a) Ni and Fe	(b)	Ga and In	(c)	Zr and Ti	(d)	Ag- and Au
171.	Identify an alloy conta	aining	a non-metal as a c	onsti	tuent in it.		
	(a) Invar	(b)	Steel	(c)	Bellmetal	(d)	Bronze
172.	During electrolytic re	fining	of copper some m	etals	present as imp	urity	settle as "anode
	mud \therefore I nese are	(b)	Dh and Zn	(a)	Ag and Au	(4)	Eo and Ni
173	(a) Shand Ag Which of the followir	(U) Io rea	tion is an example	(c)	Ag and Au	ess?	
175.	(a) $2Ag + 2HCl + 0$	(0) =	$\rightarrow 2$ AgCl+HO	010	alemation proc	055 :	
	(b) $2Zn + O_2 \rightarrow 2Z$	ZnO	, 1901 1120				
	(c) $2ZnS + \frac{2}{3}O_2 \rightarrow$	2Zn	$O + 2SO_2$				
	(d) MgCO ₃ \rightarrow Mg	gO + 0	CO ₂				
174.	During metallurgy roa	asting	-calculation carried	d on –	— furnace		
	(a) reverberatory			(b)	electric		
	(c) blast			(d)	muffle		
175.	The metal refined by	liquat	10n IS	()	11	(1)	
176	(a) tin The motel fails to be r	(b)	Silver	(c)	gold	(d)	ZINC
1/0.	The metal fails to be μ	(h)	ci by zone renning	(c)	P	(d)	K
177	Metals having standa	rd red	buction potential b	etwe	$e_{n} + 0.5 t_{0} - 0^{-1}$	(u) 5 V a	reusually
1//.	extracted by		—	01110		J V U	ie usually
	(a) smelting			(b)	calcination		
	(c) Aluminothermy			(d)	hydrometallui	rgy	
UNI	T - VII						
178.	The dipole moment of	of NF,	is less than NH ₃ b	ecau	se:		
	(a) F is more reactiv	ve tha	nH				
	(b) NH _a forms asso	ciated	molecules				
	(c) The resultant of	the b	ond polarity is less				
	(d) The resultant of	the in	dividual polarities	ison	posed by the p	olarit	v of lone pair
179.	The lightning in atmos	sphere	e cause the formation	on of:		oluin	y or lone pui
	(a) NO	(b)	O,	(c)	CO,	(d)	H ₂ O ₂
180.	Calcium carbide when	1 heat	ed with nitrogen fo	orms:	2		2 2
	(a) Ca N	(b)	Ca(CN)	(c)	CaCN	(d)	Ca(CNO)
181	Which hydride is mos	et stak	le ?			(4)	
101.		(h)	то : Shu	(a)	DЦ	(A)	NH
100	(a) $AS\Pi_3$	(0)	50П ₃	(0)	гп3	(u)	лл ₃
182.	which is a poison?				N. HOC	(1)	
	(a) Hg_2Cl_2	(b)	As_2O_3	(c)	NaHCO ₃	(d)	NaCI

183.	Ammonia on heating with carbon dioxide un	der pro	essure gives:
	(a) NH_4HCO_3	(b)	$(NH_4)_2CO_3$
	(c) $\rm NH_2COONH_4$	(d)	$(NH_4)_2CO$
184.	Basic oxide is:		
	(a) Bi_2O_3 (b) As_2O_3	(c)	P_2O_3 (d) N_2O_3
185.	NaOH can absorb:		
	(a) N_2O_5 (b) NO	(c)	N ₂ O (d) All of these
186.	Which sulphide is insoluble in yellow ammon	ium su	Ilphide ?
	(a) SnS (b) As_2S_3	(c)	Sb_2S_3 (d) Bi_2S_3
187.	Calcium phosphide is used in smoke screens	becau	use it:
	(a) Burns to form soot	(b)	Gives PH ₃ which forms smoke
	(c) Immediately catches fire in air	(d)	Is a gas which brings tears in eyes
188.	Which of the following statements is not true		
	(a) NO_2 can be prepared by heating Pb (N	$NO_3)_2$	
	(b) NO_2 is red-brown gas		
	(c) NO_2 is paramagnetic	(d)	NO_2 readily dimerises to N_2O_4
189.	Tailing of mercury is due to formation of		
	(a) mercuric oxide	(b)	mercurous oxide
	(c) mercuric hydroxide	(d)	mercurous chloride
190.	Which catalyst is used now-a-days in the c	ontac	t process for the manufacturing of
	sulphuric acid ?		
	(a) Nil (b) V_2O_5	(c)	Pt (d) Fe
191.	About H_2SO_4 which is incorrect ?		
	(a) Reducing agent	(b)	Dehydrating agent
	(c) Sulphonating agent	(d)	Highly viscous
192.	When a lead storage battery is discharged	~ \	
	(a) SO_2 is dissolved	(b)	Lead sulphate is consumed
	(c) Lead is formed	(d)	Sulphuric acid is consumed
193.	Sulphuric acid has great affinity for water be	cause	
	(a) it hydrolyses the acid	(b)	it decomposes the acid
104	(c) acid forms hydrates with water	(d)	acid decomposes water
194.	Structure of SF_4 is	• 1 1 0	a 1)
	(a) octahedral (b) trigonal bipyran	nidai (See-saw-spahe)
105	(c) square planar (d) tetraneural	ing	and radiating aganta ?
195.	(a) USO (b) SO	ising (and reducing agents ?
106	(a) $\Pi_2 SO_4$ (b) SO_2	(U) 42 U	H_2S (u) ΠNO_3
190.	Collect order of bolid angle of $\Pi_2 O$, $\Pi_2 O$	Π_2 SC, (h)	Π_2 IC IS U $\cap >$ H $\subseteq >$ H $\subseteq >$ H T_e
	(a) $H_2 \to H_2 \to $	(b) (d)	$H_2O > H_2O > $
197	In which of the following all bonds are not ex	(u) ? [sur	$\Pi_2 SC > \Pi_2 S > \Pi_2 \Pi_2 \Pi_2 = \Pi_2 S$
171.	(a) SF (b) SiF	(c)	XeF (d) BF -
	$(a) \text{Sr}_4 \qquad (b) \text{Sr}_4$	(0)	Hor_4 (u) Dr_4

198.	When potassium ferrocyanide crystals are heat	ated	with conc. H_2S	$\overline{O_4}$ th	e gas evolved as
	(a) SO_2 (b) NH_3	(c)	CO ₂	(d)	CO
199.	What is wrong about H ₂ S?				
	(a) It is a covalent compound	(b)	It is a gas wit	h bad	l smell
	(c) It is a weak base in water				
	(d) It is strong reducing agent than H_2O .				
200.	When natural rubber is heated with Sulphur, i	t is ca	alled		
	(a) vulcanisation (b) sulphonation	(c)	sulphurization	1 (d)	none of these
201.	Tincture Iodine is				
	(a) Aqueous solution of Iodine	(b)	Solution of I ₂	in ac	jueous KI
	(c) Alcoholic solution of I_2	(d)	Aqueous solu	ition	of KI
202.	Which one is the strongest reducing agent ?				
	(a) HF (b) HCl	(c)	HBr	(d)	HI
203.	The most powerful oxidising agent is				
	(a) Fluorine (b) Chlorine	(c)	Bromine	(d)	Iodine
204.	Chlorine acts as a bleaching agent only in the	prese	ence of:		
	(a) dry air (b) sunlight	(c)	moisture	(d)	pure oxygen
205.	Which of the following is a preparation of ch	lorine	e?		
	(a) HCl acting on $KMnO_4$	(b)	HCl acting of	n Mn	O ₂
	(c) Electrolysis of brine	(d)	Allofthese		
206.	Which one of the following reacts with chlorin	ne to	formphosgene	??	
	(a) SO_2 (b) CO_2	(c)	NO	(d)	CO
207.	Euchlorine is:				
	(a) a mixture of Cl_2 and ClO_2	(b)	a chloride of e	europ	num
	(c) a mixture of Cl_2 and ClO_7	•••	~1		
	(d) obtained by heating perchlorate and con	ic.HC	CI		
208.	Which of the following is a life saving mixture	?			10
	(a) Mixture of Helium and Oxygen	(b)	Mixture of N	eon a	and Oxygen
200	(c) Mixture of Neon and Nitrogen	(a)	Mixture of A	rgon	and Oxygen
209.	(a) Use (b) Ar	(-)	N.	(1)	V-
210	(a) He (b) Af	(C) latt a	Ne	(d)	Xe
210.	The preparation of $\underline{\qquad}$ compound by Bart		O Dt E	11011 (4)	n compound. \mathbf{V}_{2} Dt E
211	(a) AeF_2 (b) AeO_3 Which type of hybridization is involved in the	(C)	$O_2 \Gamma \Gamma_6$	(u)	Aertr ₆
211.	which type of hybridization is involved in the $(a) = sn^2d^2$ (b) sn^2d^3	(a)	$\sin^3 d$	(d)	sn^2
212	(a) sp u (b) sp u Which cannot be formed ?	(0)	sp u	(u)	sp
212.	(a) He^{2+} (b) He^{+}	(c)	Не	(d)	Не
213	Which one of the following noble gases is the	mos	t abundant in a	(u) tmos	nhere $?$
215.	(a) Kr (b) Δr	(c)	Ne	(d)	He
214	A rare gas that was dected in the sun before i	t was	s discovered or	(u) 1 eart	h is
<u>~</u> 17.	(a) helium (b) Neon	(c)	Krynton	(d)	Xenon
215	Which one of the following noble gases does	not e	exist in atmospl	nere s	and is obtained
<u> </u>	on radioactive disintegration?				
	(a) Rn (b) Kr	(c)	Ne	(d)	Ar
				(4)	

216.	. Helium is added to the oxygen supply used by deep-sea divers because:							
	(a)	it is less soluble in	1 bloo	d than nitrogen at	high	pressures.		
	(b)	it is lighter than ni	troge	n.				
	(c)	it is readily miscil	ole wit	th oxygen.	(d)	it is less poisor	nous	than nitrogen.
217.	The	coloured discharg	e tube	es for advertisemen	nt ma	inly contain:		
	(a)	Xenon	(b)	Helium	(c)	Neon	(d)	Argon
218.	Shap	be of $XeOF_4$ is						
	(a)	octahedral	(b)	square pyramidal	(c)	pyramidal	(d)	T-shaped
219.	Bon	d angle in XeO_3 is						
	(a)	107°	(b)	119°	(c)	92°	(d)	103°
220.	Amo are :	ong the following,	the s	pecies having squa	are p	lanar geometry	v for t	he central atom
	(i)	XeF ₄	(ii)	SF_4	(iii)	[NiCl ₄] ^{2–}	(iv)	$[PdCl_4]^{2-}$
	(a)	(i) and (iv)	(b)	(i) and (ii)	(c)	(ii) and (iii)	(d)	(iii) and (iv)
221.	The	reddish brown col	lour a	gs formed when n	itric	oxide is oxidise	ed by	air is
	(a)	N ₂ O ₅	(b)	N ₂ O ₄	(c)	NO ₂	(d)	N ₂ O ₃
222.	Amo	ong trihalides of ni	trogen	n, which are is the	least	basic		
	(a)	NF ₃	(b)	NCl ₃	(c)	NBr ₃	(d)	NI ₃
223.	Whi	ch of the following	g oxid	es is the most acid	ic /			
	(a)	N ₂ O ₅	(b)	P_2O_5	(c)	As ₂ O ₅	(d)	Sb ₂ O ₅
224.	The acid	number of hydrog) and its basicity a	gen at re	oms attached to 'I	P'in	hypo phosphoi	rus ac	cid (Phosphinic
	(a)	Zero, one	(b)	two, one	(c)	one, two	(d)	three, one
225.	Whi	ch substance of the	e follo	wing has he highe	st pro	oton affinity?		
	(a)	PH ₃	(b)	H ₂ O	(c)	H ₂ S	(d)	NH ₃
226.	The	element which for	ms oy	kides in all oxidation	on sta	ates $+$ I to $+$ V is		-
	(a)	Ν	(b)	Р	(c)	As	(d)	Sb
227.	Whi	ch of teh following	g oxid	es of nitrogen is sc	olid?			
	(a)	NO ₂	(b)	N ₂ O	(c)	N ₂ O ₃	(d)	N ₂ O ₅
228.	A ga	s dissolved in FeS	O_4 so	lution giving brow	n rin	g. The gas is		
	(a)	N ₂ O ₃	(b)	NO ₂	(c)	N ₂ O	(d)	NO
229.	The	bond angle of PP	P in P	4 has				
	(a)	90 ⁰	(b)	60°	(c)	1200	(d)	75 ⁰
230.	Lead	d reacts with cold	dilute	HNO ₃ , gives				
	(a)	NH ₄ NO ₃	(b)	N ₂ O	(c)	NO	(d)	NO ₂
231.	Orth	o phosphoric acid	l has t	he formula				
	(a)	H ₃ PO ₄	(b)	HPO ₃	(c)	H ₃ PO ₂	(d)	H ₃ PO ₃
232.	The	order of thermal st	tability	y of the following of	comp	ounds:		
		H_2S , H_2Se , H_2T	e, H ₂ 0	С				
	(a)	$H_2O > H_2S > H_2$	Se>	H ₂ Te	(b)	$H_2S > H_2Se >$	> H ₂	$Te > H_2O$
	(c)	$H_2S < H_2Se < H$	$_{2}$ Te <	H ₂ O	(d)	$H_{2}O < H_{2}S <$	H ₂ S	$w < H_2 Te$
						-	·	

233.	Sulphuric acid is a covalent molecule having h	exav	alent sulphur at	tom.	Its structure is
	(a) planar (b) Tetrahedral	(c)	octahedral	(d)	Trigonal
234.	H_2SO_4 is a dibasic acid but the ionisation con	stant	s show		
	(a) $\frac{1}{K_{a_2}} > \frac{1}{K_{a_2}}$ (b) $K_{a_1} < K_{a_2}$	(c)	$K_{a_2} < K_{a_1}$	(d)	$K_{a_1} = K_{a_2}$
235.	The maximum covalency of sulphur is				
	(a) 2 (b) 4	(c)	8	(d)	6
236.	Which of the following halides is most acidic	in aqı	ueous medion f	?	
	(a) PCl_3 (b) $SbCl_3$	(c)	BiCl ₃	(d)	CCl_4
237.	Among the acids of phosphorous H_3PO_4 , H_3	PO ₂ ,	H_3PO_3 , the ba	sicit	y is
	(a) $H_3PO_2 > H_3PO_3 > H_3PO_4$	(b)	$H_3PO_4 > H_3I$	20 ₃ >	$> H_3PO_2$
220	(c) $H_3PO_3 > H_3PO_2 > H_3PO_4$	(d)	$H_3PO_3 > H_3P$	$PO_4 >$	$> H_3PO_4$
238.	Water is oxidised to oxygen by	(-)	ЦО	(1)	
220	(a) CIO_2 (b) $KMIO_4$	(C)	H_2O_2	(a)	Fluorine
239.	which of the following oxides of hitrogen is the (a) N (b) N (b)			(d)	NO
	(a) N_2O (b) N_2O_5	(0)	NO	(u)	N ₂ O ₃
240.	The gases produced in the reaction Pb(NO	$(0_3)_2 -$	$\xrightarrow{\Lambda}$ and (N	IH_4	$NO_3 \xrightarrow{\Delta} are$
	respectively.				
	(a) N_2O , NO (b) N_2O , NO ₂	(c)	NO, NO ₂	(d)	NO ₂ , N ₂ O
241.	Ozone is a powerful oxidising agent due to				
	(a) paramengetic nature	(b)	diamagaetic n	ature	2
0.10	(c) presence of nascent oxygen	(d)	none of these		
242.	When conc H_2SO_4 is heated with copper turn	ings	gives		
	(a) SO_3 (b) SO_2	(c)	HSO_3^-	(d)	none of these
243.	The bond angle of SO_2 is				
	(a) 119.5° (b) 109.5°	(c)	125°C	(d)	90 ⁰
244.	In the test of SO ₂ with acidified $K_2Cr_2O_7$ is g	reen	due to		
	(a) dichromate changes to cromate	(b)	formation of	$\operatorname{Cr}_2(S)$	$SO_4)_3$
	(c) formation of K_2SO_4	(d)	none of these		
245.	The brown ring in nitrate test is the formation	of		011	
	(a) penta aqua nitrosonium iron (1) sulfate	(b)	$[Fe(H_2O)_5 Solution]$		NO
216	(c) $FeSO_4$. NO Discusson is as but subbur is solid. This is du	(a)	none of these		
240.	Dioxygen is gas but supplut is solid. This is det (a) Oxygen forms $p\pi - p\pi$ multiple bond	ie to			
	(a) Oxygen forms $p\pi - p\pi$ multiple bond (b) Subburi forms $n\pi$, $n\pi$ multiple bond				
	(c) Support has weak vander weaks force	(d)	S Shond is r	vook	or
247	The depletion of Ω by CEC's because of	(u)	9-9 00110 12 V	veak	U 1.
2-17.	(a) F free radicals	(h)	Cl free radica	ls	
	(c) formation of F. molecule	(d)	none of these		
248.	The compounds of fluorine with oxygen is cal	led			
	(a) fluorides of oxygen	(b)	oxides of fluo	rine	
	(c) oxofluro compounds	(d)	none of the al	bove	
	-				

l

249.	Nitric oxide (NO) when released in air becom	nes			
	(a) Green (b) yellow	(c)	orange	(d)	brown
250.	N_2 is less reactive because				
	(a) it is inert gas	(b)	it is gas at roc	mte	mperature
	(c) it has high bond dissociation energy	(d)	N–N bond in	wea	k
251	Correct order of electron affinities of halogeou	us is			
	(a) $F > Cl > Br > I$	(b)	I > Br > Cl >	·F	
	(c) $Cl > F > I > Br$	(d)	Cl > F > Br >	> I	
252.	Iodine readily dissolves in potassium iodide so	lution	n giving		
	(a) I ⁻ (b) KI ⁻	(c)	KI	(d)	KI,
253.	The acid used for etching glass is		2		3
	(a) H.SO. (b) HF	(c)	HNO.	(d)	K.CrO.
254.	When chlorine is passed through concentr	ated	solution of K	OH.	the compound
	formed is			,	
	(a) KClO. (b) KClO.	(c)	KClO.	(d)	KClO
255.	The correct order of thermal stability of hydro	ogen	- halides (H–X) is	
	(a) $HI > HCI < KF > HBr$	(b)	HCl <hf>F</hf>		< HI
	(c) $HF > HCl > HBr > HI$	(d)	HI > HBr > I	HC1>	> HF
256	The strongest reducing agent among the follow	ving i	is	101	
200.	(a) F^- (b) C^-	(c)	Br⁻	(d)	I-
257	Indine is formed when KI reacts with a solution	(\mathbf{e})		(u)	1
237.	(a) CuSO (b) (NH) SO	(c)	ZnSO	(d)	FeSO
258	Th inert gases producing maximum number of	(C) fcorr	2100_4	(u)	10504
250.	(a) He and Ne (b) Ar and Ne		Kr and Ne	(d)	Kr and Va
250	Which following statement is incorrect	(C)	KI allu INC	(u)	KI and AC
239.	which following statement is incorrect (a) $H_2(g)$ is used for inflating according tyre				
	(a) The lowest bailing point of Ha is due to	nrag	once of work y	ando	r Waals force
	(b) The lowest boining point of He is due to (c) VaOE is almost T shaped	(d)	Va con also a		a waals lorce.
260	(c) AcOr ₂ is almost 1-shaped Most agidia axida among the following is	(u)	At call also c	ompo	Sund with CI ₂
200.	(a) Cl O (b) Cl O	(a)	C1O	(4)	$C_{1}O$
261	(a) $C_{12}O_{5}$ (b) $C_{12}O_{5}$	(C)	CI_2O_3	(u)	Cl_2O_7
201.	SO_2 acts as temporary bleaching agent but C_1 at	us as	permanent blea	CHINE	gagent, because?
	(a) C_1 bleaches due to reduction but SO_2 d	ue to	oxidation.		
	(b) C_1 bleaches due to oxidation but SO_2 di	(d)	None of the	have	
262	(c) Both of the anove	(u)	None of the a	idove	5
202.	The weakest acid among the following is	(-)		(1)	ШЕ
202	(a) HI (b) HBI	(C)	HCI	(a)	пг
263.	The gas not adsorbed by coconut charcoal is	()		(1)	TZ
201	(a) He (b) Ne $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	(c)	Ar $(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	(a)	Kr
264.	In which of the following compounds all bonc	ls are	not identical?		
	(a) SiF_4 (b) SF_4	(c)	XeF ₄	(d)	BF_4^-
265.	If the valence shell electronic configuration f	or ar	n element is ns ²	2 sp ⁵ , t	his element will
	belong to the group of			1,-	
	(a) alkali metals (b) inert` metals	(c)	noble gases	(d)	halogens.
266.	Oxidation of NH, by cupric oxide vields-		0	、 /	J
	(a) N_2 (b) NO	(c)	Cu(NO.).	(d)	Cu ₂ O
			3/2	()	2

UNI	T - VIII						
267.	Essential constituent	ofana	malgam is:				
	(a) Fe	(b)	An alkali metal	(c)	Silver	(d)	Mercury
268.	The chloride that turn	ns bla	ck on addition of	NH ₄ C	OH is:		
	(a) AgCl	(b)	PbCl ₂	(c)	Hg_2Cl_2	(d)	Both(b) and (c)
269.	Chemical name of con	rrosiv	e sublimate is:				
	(a) Mercurous chlo	ride		(b)	Zinc chloride		
	(c) Mercuric chlorid	de		(d)	Aluminium cl	nlorid	e
270.	In Nessler's reagent,	the io	n present is:				
	(a) Hg ⁺	(b)	Hg^{2+}	(c)	HgI_2^{2-}	(d)	HgI_4^{2-}
271.	Calomel is:						
	(a) Hg ₂ Cl ₂ and Hg	(b)	HgCl	(c)	$Hg + HgCl_{2}$	(d)	Hg,Cl,
272.	Cinnabar is an ore of		2		2		2 2
	(a) Lead	(b)	Zinc	(c)	Silver	(d)	Mercury
273.	Calamine is:						
	(a) ZnSO ₄	(b)	ZnCO ₃	(c)	ZnO	(d)	CaCO ₃
274.	Sulphide ore of zinc i	s conc	centrated by:				
	(a) Froth Floatation	n proc	ess	(b)	Electromagn	etic p	rocess
	(c) Gravity process			(d)	Distillation		
275.	Zn cannot displace th	e follc	wing ions from th	eir ac	lueous solutior	ns:	
	(a) Ag^+	(b)	Cu^{2+}	(c)	Fe ²⁺	(d)	Na^+
276.	A metal gives two ch	loride	s 'A' and 'B'. 'A'	gives	black precipita	ate w	ith NH ₄ OH and
	'B' gives white. With	KI T	³ gives a red prec	ipitat	e soluble in ex	cess (of KI. A and
	(a) HoCl and Ho	L.		(b)	Ho Cl and H	IoC1	
	(c) HoCl and ZnC	 		(d)	Z_nC1 and H	oCl	
277.	An element which is I	 1ighlv	toxic for plants ar	nd ani	mals is ?	5012	
	(a) Au	(b)	Mn	(c)	Hg	(d)	Ca
278.	Zinc oxide is:				U		
	(a) A basic oxide			(b)	An acidic oxi	ide	
	(c) A neutral oxide			(d)	An amphote	ric ox	tide
279.	Which is known as P	hiloso	pher's wool?		-		
	(a) HgO	(b)	CdO	(c)	BaO	(d)	ZnO
280.	Chemical name of ver	milio	n is:				
	(a) Mercuric sulphi	de		(b)	Mercurous su	ulphic	le
	(c) Zinc sulphide			(d)	Cadmium sul	phide	;
281.	The pair of metals wh	nich di	issolves in NaOH((aq) is	:		
	(a) Al, Cu	(b)	Zn, Cd	(c)	Pb, Sn	(d)	Zn, Al
282.	Which one of the follo	owing	ions is the most s	table	in aqueous solu	ution	?
	(a) Mn^{3+}	(b)	Cr ³⁺	(c)	V^{3+}	(d)	Ti ³⁺

l

283.	The highest oxidation state is achieved by wh	nichof	the following		
	(a) $(n-1)d^8ns^2$ (b) $(n-1)d^5ns^2$	(c)	$(n-1)d^3ns^2$	(d)	$(n-1)d^{5}ns^{1}$
284.	KI and $CuSO_4$ solution when mixed give				
	(a) $CuI_2 + K_2SO_4$	(b)	$Cu_2I_2 + K_2S$	O_{A}	
	(c) $K_2SO_4 + Cu_2I_2 + I_2$	(d)	$K_2 SO_4 + Cu$	Ι <u>,</u> +Ι,	
285.	Passivity of iron is due to the formation of thi	n film	of its:	2 2	
	(a) Oxide (b) Carbonate	(c)	Nitride	(d)	Hydroxide
286.	Mn belongs to:				
	(a) s-block (b) p-block	(c)	d-block	(d)	<i>f</i> -block
287.	$K_3[Co(NO_2)_6]$ is:				
	(a) Fischer's salt	(b)	Thenard's blu	ıe	
	(c) Rinman's green	(d)	Blue vitriol		
288.	The term 'fools gold' is used for a mineral with	hich sl	nines like gold.	It is:	
	(a) Iron pyrite (FeS ₂)	(b)	Cpper glance	;	
	(c) Cinnabar	(d)	Cadmium sul	phide	;
289.	Which match is incorrect ?				
	(a) Ammonia soda process—manufacture	of po	tassium carboi	nate	
	(b) Bessemer's process—manufacture of s	steel			
	(c) Halls process – Aluminium				
	(d) Dow's process—manufacture of pheno	ol			
290.	Wood's metal is an alloy of:				
	(a) Pb (b) Zn	(c)	Fe	(d)	Sn
291.	Which of the following has the highest perce	ntage	of carbon ?		
	(a) Stainless steel (b) Pig iron	(c)	Solder	(d)	German silver
292.	Other forms of iron can be produced from:				
	(a) Cast iron (b) Wrought iron	(c)	Pigiron	(d)	Steel
293.	Which of the following does not show variab	ole val	ency?		
	(a) Sc (b) Cu	(c)	V	(d)	Hg
294.	Mercury forms amalgams with all except:				
	(a) Al (b) Zn	(c)	Ni	(d)	Fe
295.	Lithopone, a white pigment, consists of:				
	(a) Al_2O_3 and $CaCO_3$	(b)	BaS and PbS	SO_4	
	(c) ZnS and $BaSO_4$	(d)	PbS and Mg	0	
296.	Zinc white is a better white pigment than lead	d whit	e because it:		
	(a) Has more covering power than lead wh	nite			
	(b) Is not blackened by the action of H_2S				
	(c) Is soluble in water				
	(d) Becomes yellow when heated				
297.	The pair of metals which fails to dissolve in I	NaOH	l(aq) is:		
	(a) Al, Be (b) Zn, Cd	(c)	Zn, Sn	(d)	Zn, Al

298.	The	formula of the zir	ic con	nplex with ammon	ia is			
	(a)	[Zn(NH ₃) ₂]Cl			(b)	$(NH_4)_2ZnO_2$		
	(c)	$[Zn(NH_3)_4]Cl_2$			(d)	[Zn(NH ₃) ₆ Cl	2	
299.	A tr num	ansition element X ıber is:	X has	a configuration [A	ar] 3d	⁴ in its +3 oxid	ation	state. Its atomic
	(a)	25	(b)	26	(c)	22	(d)	19
300.	d-bl	ock elements form	ncolo	oured ions because	e			
	(a)	they absorb som	e ene	rgy for d-transitio	n			
	(b)	they absorb som	e ener	rgy for p-transitio	n			
	(c)	they absorb som	ne ene	rgy for d-d transit	ion			
	(d)	they do not abso	orb an	y energy				
301.	The	characteristics of	trans	ition metals to form	n the	complex ion is	5	
	(a)	having d-subshe	ll unp	aired electrons				
	(b)	having paired d-	subsh	ell electrons				
	(c)	providing appro	priate	empty d-orbitals				
	(d)	having small cha	rge/s	size ratio				
302.	Wh	ich of the followin	g proj	perties shows that	iron	is a transition e	elemei	nt.
	(a)	it forms double s	alts		(b)	it forms stab	le con	nplexes
	(c)	it decomposes st	team a	at high temperatur	e(d)	it rusts on mo	oist` a	ir.
303.	Whi	ich of the following	g elen	nents involves grad	dual f	illing of 5-flev	el	
	(a)	transition metal	(b)	Lanthanoids	(c)	coinage meta	als (d)	Actinoids
304.	The	general electronic	conf	iguration of transit	tion e	lements is		
	(a)	ns^2nd^{1-10}	(b)	$(n-1)d^{1-10} ns^{0-2}$	(c)	$(n-1)d^{1-10}$ ns	$s^{2}(d)$	$ns^{0-2}(n-1)d^{10}$
305.	Wh	ich of the ions will	give	colourless aqueou	s solu	ition?		
	(a)	Cu^{2+}	(b)	Cu^+	(c)	Ni ²⁺	(d)	Fe ²⁺
306.	Wh	ich of the followin	g belo	ongs to the actinid	e seri	es of elements	?	
	(a)	Dy	(b)	U	(c)	Yb	(d)	Ta
307.	Whi	ich of the followin	g con	pounds will not g	ive po	ositive chromy	l chloi	rids test.
	(a)	HgCl ₂	(b)	ZnCl ₂	(c)	CuCl ₂ (d)	C ₆ H	$I_5 \overset{+}{N}H_3 Cl^-$
308.	Whi	ich metal in the firs	st tran	sition series exhib	it + o	xidation state	most f	requently.
	(a)	Zn	(b)	Sc	(c)	Cu	(d)	Cd
309.	Whi Mn	ich of the following O_7	ng oxi	des of Mn is ampl	noteri	ic in nature Mi	nO, M	$\ln O_2$, Mn_2O_3 ,
	(a)	MnO	(b)	MnO ₂	(c)	Mn ₂ O ₃	(d)	Mn ₂ O ₇
310	Wh	ich of the followin	g forr	n on alloy?		2 J		<u>~</u> (
	(a)	Zn + Pb	(b)	Fe+Hg	(c)	Fe + C	(d)	Pt+Hg
311.	The	highest magnetic	mome	ent is in the transiti	onm	etal having		
	(a)	3d ²	(b)	3d ⁷	(c)	3d ⁵	(d)	d ⁹

312. A transition metal exist in its highest oxidation state. It is expected to behave as (a) a chelating agent (b) a central metal in a co-ordination compound (c) an oxidising agent (d) a reducing agent 313. $K_4[Fe(CN)_6]$ is used for the detection of (a) Cu²⁺ (b) Cu⁺ (c) Fe^{3+} (d) Ni²⁺ 314. The most common oxidation state of lanthanoids is (a) +4 (b) +6 (c) +2(d) +3 315. Which of the following metals is used in incandescent lamps? (d) molyvdemum (a) cromium (b) Tungsten (c) Zirconium 316. The disproportionate reaction combination of the following is $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$ (i) (ii) $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ (iii) $2Cu^+ \rightarrow Cu^{2+} + Cu$ (iv) 2 $K Mn O_4 \rightarrow K_2 Mn O_4 + Mn O_2 + O_2$ (a) (i) and (ii) (b) (ii) and (iii) (c) (i) and (iii) (d) (iii) and (iv) 317. Ni²⁺ gives coloured salts due to (a) complete d-orbitals (b) incompletely filled d-orbitals (c) presence of p-orbitals (d) presence of f-orbitals UNIT - IX 318. $[Cr(NH_3)_6]^{3+}$ ion is : (a) Paramagnetic (b) Diamagnetic (c) Square planar (d) None 319. Among $\left[\operatorname{Ni}(\operatorname{CN})_{4}\right]^{2-}$ $\left[\operatorname{Ni}\operatorname{Cl}_{4}\right]^{2-}$ and $\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$: (a) $[Ni(CN)_{4}]^{2-}$ is square planar and $NiCl_{4}^{2-}$ and $Ni(CO)_{4}$ are tetrahedral (b) NiCl_4^{2-} is square planar and NiCN_4^{2-} and Ni(CO)_4 are tetrahedral (c) $Ni(CO)_4$ is square planar and $NiCN_4^{2-}$ and $[NiCl_4]^{2-}$ are tetrahedral (d) None 320. EAN of Cr in $[Cr(NH_3)_6]Cl_3$ is: (b) 33 (d) 35 (a) 32 (c) 34 321. Exchange of co-ordination group by a water molecule in complex molecule results in: (a) lonisation isomerism (b) Hydration isomerism (c) co-ordination isomerism (d) Geometrical isomerism 322. EDTA is a ligand: (a) Monodentate (b) Hexadentate (c) Bidentate (d) Tridentate

323.	The oxidation state of Ni in nickel carbonyl is:							
	(a)	Zero	(b)	1	(c)	2	(d)	3
324.	The primary and secondary valency of cobalt in hexacyanido cobaltate (III) is							
	(a)	3, 6	(b)	6, 3	(c)	2,6	(d)	none of these
325.	The	correct formula o	f Zei	se's ssalt is				
	(a)	$PtCl_{3}, C_{2}H_{6}]^{-}K^{+}$			(b)	$[PtCl_2, (C_2H)]$	$(2)_{2}^{-}K$	+
	(c)	$K^{+}[PtCl_{3}. C_{2}H_{4}]$	_		(d)	$[PtCl_3, C_6H_6]$]-K+	
326.	[Co $(NH_3)_3$ Br] SO ₄ and [Co $(NH_3)_3$ SO ₄] Br are related as							
	(a)	Linkage isomers			(b)	lonisation iso	mers	
	(c)	Co-ordination is	omer	S	(d)	none of these)	
327.	7. Which of the following complex or the complex ion will show geometrical is						rical isomerism?	
	(a)	$[Pt(NH_3)_2Cl_2]$			(b)	$[Pt(NH_3)Cl_5]$]-	
	(c)	$[Pt(NH_3)_5Cl]^{3+}$			(d)	$[Co(NH_3)_6]C$	Cl_2	
328.	Fac	- Mer isomerism i	s asso	ociated with which	nof t	he following ge	enera	l formula ?
	(a)	$M(AA)_2$	(b)	$M(AA)_3$	(c)	MABCD	(d)	MA ₃ B ₃
329.	9. What is the coordination number of metal in $[Co(en)_2Cl_2]^+$?							
	(a)	4	(b)	5	(c)	6	(d)	3
330.	The oxidation state of Fe in brown ring complex $[Fe(H_2O)_5NO]SO_4$ is							
	(a)	+1	(b)	+2	(c)	+3	(d)	+4
331.	Allli	igands are:						
	(a)	Lewis acid	(b)	Lewis base	(c)	Neutral	(d)	None
332.	The	hybridisation of 1	Fe in	$K_4[Fe(CN)_6] com$	plex	is:		
	(a)	d^2sp^2	(b)	d ² sp ³	(c)	dsp ²	(d)	sp ³
333.	The	charge on cobalt	in [C	$o(CN)_{6}^{3-}$ is :				
	(a)	-6	(b)	+3	(c)	-3	(d)	+6
334.	4. Complex forming tendency increases with:							
	(a) Increase in size of cation			(b)	Decrease in size of cation			
	(c)	(c) Increase in size of anion				None		
335.	. The number of unpair $\overline{e}(s)$ in hexafluoridocobaltate (III) ion is							
	(a)	4	(b)	3	(c)	3	(d)	1
336.	EAN	N of Fe in K_4 [Fe($CN)_{6}$	is:				
	(a)	38	(b)	37	(c)	36	(d)	35
337.	[Cr($(\mathrm{H}_2\mathrm{O})_6]^{3+}$ ion has o	d-eleo	ctrons equal to:				
	(a)	2	(b)	3	(c)	4	(d)	5
338.	In SCN ligand if N is attached to central atom, the name of ligand is:							
	(a)	Thiocyanato-N	(b)	Cyanato-N	(c)	Thiocyanato	-S (0	d) Cyanato-S

l

339.	. Addition of KI to Hgl ₂ forms complex $K_2[HgI_4]$ which in contact with $NH_4(Aq)$ gives										
	(a)	Red colour			(b)	Blue colour					
	(c)	Violet colour			(d)	Brown					
340.	'en'	stands for ethyler	ne dia	mine which is		·					
	(a)	Monodentate	(b)	Hexadentate	(c)	Bidentate	(d)	Tridentate			
341.	The	c complex [Co(NH ₃) ₅ Br]SO ₄ will give moles of ions per mole of salt.									
	(a)	1	(b)	2	(c)	3	(d)	0			
342.	Con	nplexes with bide	ntate	ligands are called							
	(a)	Ligands	(b)	Chelates	(c)	Complexes	(d)	None			
343.	The	oxidation number	r and	co-ordination num	nber o	of Ni in nickel c	arbo	nyl is :			
	(a)	0, 4	(b)	1, 0	(c)	2, 0	(d)	0, 6			
344.	The	The tendency of the transition metals to form complexes is not explained by :									
	(a) Small size of the metal ion (b) Large ionic or nucl					lear charge					
	(c)	Low basicity of	metal	ions	(d) Non-availability of d-orbitals						
345.	The number of ions formed on dissolving one mole of Mohr's salt is :										
	(a)	4	(b)	5	(c)	3	(d)	6			
346.	Nickel (II) tetracyanide complex has geometry with hybridisation.										
	(a)	Linear, sp ²			(b)	Tetrahedral, s	sp ³				
	(c)	Square planar, dsp ²				(d) squareplaner, sp ³					
347.	Inw	n which of the following complexes the nickel metal is in highest oxidation state:									
	(a)	a) Ni(CO) ₄ (b) $K_2[NiF_6]$ (c) $[Ni(NH_3)_6](BF_4)_2$ (d) $K_4[Ni(CN)_6]$									
348.	The	The IUPAC name of $[CoCl(NO_2)(en_2)]Cl$ is:									
	(a)	(a) Chloronitrobis (ethylene diamine) cobaltic (in) chloride									
	(b)	Chloronitrobis (ethyle	ene diamine) cobali	t (II) (chloride					
	(c)	Chlorobis (ethar	ne-1,2	2-diamine) nitro co	balt ((III) chloride					
240	(d)	Bis (ethane-1,2-	diami	ne) chloronitrocot	balt (1	II) chloride		1			
349.	According to postulates of Werner's theory of co-ordination compounds :							ius:			
	(a) primary valency is ionisable (b) secondary valence is ionisable						is ionisable				
	 (c) primary and secondary valencies are non-ionisable (d) anterprint providence is non-ionisable 										
350	(u) Whi	only primary var	σis n	s non-ionisatic	comr	lev ?					
550.	VV 11		g 15 11		comp						
	(a)	$\left[\operatorname{Co}(\operatorname{CN})_{6}\right]^{4-}$			(b)	$\left[\mathrm{CoF}_{6}\right]^{3-}$					
	(c)	$\left[\operatorname{Ni}(\operatorname{NH}_3)_6\right]^{2+}$			(d)	$\left[Fe(H_2O)_6 \right]$] ³⁺				

UNI	T - X								
351. The hydrogen atom in chloroform is:									
	(a) Acidic (b) Basic	(c)	Neutral	(d)	None				
352.	Solvent used in dry cleaning of clothes is:								
	(a) Alcohol	(b)	Acetone						
	(c) Carbon tetrachloride	(d)	Freon						
353.	In Wurtz reaction of alkyl halides with sodium, the reactivity order of these halides is:								
	(a) $RI > RBr > RCl$	(b)	RCl> RBr	> R1					
	(c) $RBr > RI > RCl$	(d)	None						
354.	Ethyl bromide and isopropyl chloride can be distinguished by:								
	(a) Alcoholic $AgNO_3$	(b)	Comparing the	heir co	olours				
	(c) Burning the compound on spatula	(d)	Aqueous KC)H sol	lution				
355.	Which alkyl halide is preferentially hydrolysed by S_{N^1} mechanism:								
	(a) CH,Cl (b) CH,CH,Cl	(c)	CH,CH,CH	,C1 (0	d) (CH ₂) ₂ C.Cl				
356.	The alkyl group of Grignard reagent acts as:		3 2 2	2	5 5 5				
	(a) Free radical (b) Carbonium ion	(c)	Carbanion	(d)	None				
357.	Grignard reagent is prepared by the reaction between:								
	(a) Zinc and alkyl halide	(b)	Magnesium a	and al	kyl halide				
	(c) Magnesium and alkane								
	(d) Magnesium and aromatic hydrocarbon								
358.	Which compound is used in cooling:								
	(a) CHCl ₃ (b) CCl ₄	(c)	CF ₄	(d)	CCl_2F_2				
359.	Reaction of chloroform with alcoholic KOH i	in pre	esence of a prir	nary a	aromatic amine				
	is called:								
	(a) Hydrolysis	(b)	Reduction						
	(c) Wurtz reaction	(d)	Carbylamine	react	ion				
360.	Grignard reagent shows addition on:								
	(a) $> C = O$ (b) $-C \equiv N$	(c)	> C = S	(d)	All				
361.	361. Non-sticking frying pans are coated with:								
	(a) Ethylene	(b)	Styrene						
	(c) Tetrafluoro ethylene (Teflon)	(d)	Chlorofluoro methane						
362.	Which reagent is useful in increasing the carbon chain of an alkyi halide:								
	(a) HCN (b) KCN	(c)	NH ₄ CN	(d)	AgCN				
363.	Which product is obtained when bleaching po	wde	r is distilled wit	th ace	tone:				
	(a) CCl_4 (b) CHCl_3	(c)	CH ₂ Cl ₂	(d)	CH ₃ Cl				
364.	The compound that will not give iodoform on	treat	ment with alka	line ic	odine is:				
	(a) Acetone	(b)	Ethanol						
	(c) Diethyl ketone	(d)	Isopropyl alc	ohol					
365.	Ethyl alcohol gives ethyl chloride on treatment	with	i:						
	(a) NaCl (b) SOCl,	(c)	Cl_2	(d)	KCl				
	-								
366.	The reaction,								
------	--	---	----------------------------------	---	-------------------------	---	--	--	
	$RCl + NaI \xrightarrow{Acetone} R - I + NaCl is known as:$								
	(a) Wurtz's reaction		(b)	Fittig reaction	ı				
	(c) Frankland's reaction		(d)	Finkelstein's	reacti	on			
367.	Carbon tetrachloride on tre	eatment with Fe/H	, O giv	ves:					
	(a) Chloromethane		(b)	Methane					
	(c) Chloroform		(d)	Methylene ch	loride	e			
368.	Vicinal and geminal dihalid	les can be distingui	shed	by:					
	(a) KOH (aq.) (b)	KOH (alc.)	(c)	Zndust	(d)	None			
369.	Victor Grignard was away organic compounds to:	rded Nobel Prize f	òr ma	aking useful co	ompo	ounds by joining			
	(a) Fe (b)	Mg	(c)	Proteins	(d)	Na			
370.	CO_2 on reaction with C_2H	$_{5}$ MgBr and H $_{2}$ O gi	ves:						
	(a) Ethane (b)	Propionic acid	(c)	Acetic acid	(d)	None			
371.	Which one is liquid at room	n temperature:							
	(a) $CH_{3}Cl$ (b)	C ₂ H ₅ Cl	(c)	CH ₃ Br	(d)	C_2H_5Br			
372.	A compound A of formula or C of formula C_3H_4 . B or dilute H_2SO_4 containing H alkali gave the sodium salt	$C_3H_6Cl_2$ on reaction oxidation gave a c $(g^{2+} \text{ ion gave D of } f)$ of $C_2H_4O_2$. Then,	n with comp formu A is:	alkali can give ound of the for C_3H_6O , whi	e B of mula ich w	f formula C_3H_6O . $C_3H_6O_2$. C with ith bromine and			
	(a) CH ₃ CH ₂ CHCl ₂		(b)	CH,CCl,CH	3				
	(c) $CH_2ClCH_2CH_2Cl$		(d)	CH ₃ CHClCH	H ₂ Cl				
373.	Anhydrous HCl gas, on pas	ssing through ethyl	alcoł	nol, in presence	ofar	nhy. ZnCl ₂ gives:			
	(a) Ethane (b)	Ethyl chloride	(c)	Ethene	(d)	CC_4			
374.	A mixture of two organic of Isobutane was obtained as	compounds was tre a product. The tw	eated o chlo	with sodium n orine compour	netal Ids ar	in ether solution e:			
	(a) Methyl chloride and p(c) Isopropyl chloride and p	oropyi chloride d methyl chloride	(b)	Methyl chlori	de ar	nd ethyl chloride			
	(d) Isopropyl chloride an	d ethyl chloride							
375.	The reactivities of methyl of in the order :	chloride (A) propyl	chlo	ride (B) and ch	loroł	benzene (C) are			
	(a) $A > B > C$ (c)	C > B > A	(c)	A < C > B	(d)	B > A > C			
376.	The order of reactivity of fo	ollowing alcohols v	with h	alogen acids is					
	(A) $CH_3 CH_2 CH_2 - OH$								
				НС					
	(B) $CH_3CH_2CH - OH$		(C)	$CH_3CH_2 - C$	C - O	Н			
	CH ₃			H ₃ C					
	(a) $A > B > C$ (b)	C > B > A(c)	B >	A > C	(d)	A > C > B			

383. Arrange the following compounds in increasing order of their boiling points $\frac{CH_3}{CH_3} > CH - CH_2 - Br$ $(B) \quad CH_3 - CH_2 - CH_2 - CH_2 - Br$ (A) (C) $(CH_3)_3C$ –Br (a) B < A < C (b) C < A < B (c) A < B < C (d) C < B < A384. In which of the following molecules carbon atom marked with asterisk is assymetric? (b) A, B, C only (c) A, B, D only (d) A and D only (a) all of these 385. Which of the following is an example of vic-dihalide (a) Dichloromethane (b) 1, 2-dichloroethane (c) ethylidene chloride (d) Alkyl chloride 386. The position of – Br in the compound in CH_3 – $CH = CH C(Br) (CH_3), can_$ (a) Allyl (c) vinyl (d) Secondary (b) Aryl 387. Chlorobenzene is formed by reaction of chlorine with benzene in the presence of AlCl, which of the following species attacks the benzene ring in this reaction? (a) Cl⁻ (b) Cl^+ (c) AlCl₂ (d) $[AlCl_{\downarrow}]^{-}$ 388. Which of the following alkyl halide witll undergo SN¹ reaction most readily? (a) $(CH_3)_2 C - F$ (b) $(CH_3)_2 C - Cl$ (c) $(CH_3)_3 C - Br$ (d) $(CH_3)_3 C - I$ 389. What is 'A' in the following reaction? CH_2 -CH = CH₂ +HCl →A $\dot{C}H_2$ - $CH = CH_2$ $CH_2 - CH_2 - CH_2 - CH_2 - CI$ (a) (b) $CH = CH_2 = CH_2$ $H_2 = CH = CH_3$ Ċl (c) (d) 390. A primary alkyl halide would prefer to undergo (b) $S_N 2$ reaction (a) $S_{M}1$ reaction (c) α -Elimination (d) Racemisation

UNI	T - X	I						
391.	A su ether	itable combination r in Williamson's s	on of r synthe	eagents lead esis is :	ing to the p	reparation of t	ert. bı	utyl methyl
	(a)	CH ₃ I and CH ₃	CH -C- CH	oNa	(b)	CH ₃ ONa and	d CH	$ \begin{array}{c} CH_{3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
		СН						
	(c)	$CH_3 - C - I$ an $CH_3 - C - I$	d CH	₃ ONa	(d)	None of the a	above	,
392.	An a alcol	llcohol on oxidat hol is	ion is	found to giv	e CH ₃ COC	OH and CH ₃ CH	H ₂ CO	OH finally. The
	(a)	CH.CH.CH.OI	H		(b)	(CH.).C(OH	DCH.	.CH.
	(c)	CH.(CH.).CH.	OH		(d)	CH.CH(OH)CH.	CH.CH.
393	Prim	harv secondary a	nd ter	tiary alcohol	s can be dis	tinguished by	emplo	ving
575.	(a)	Oxidation		ildi y dicorior	(h)	Victor Meve	r's tes	t
	(\mathbf{u})	Lucastest			(d)	All of these		
394	(c) Con	pound A reacts	with I	PC1 to give	B which or	n treatment w	ith K([°] N followed by
574.	hvdr	olvsis forms proi	vini	c_{15} to give	product W	That is A?		ert ionowed by
	(a)	Ethane			(b)	Propane		
	(\mathbf{c})	Ethyl chloride			(b)	Ethyl alcohol		
395	Etha	nol is soluble in v	vater	due to ·	(u)	Luigituiconoi		
	(a)	Ethyl group			(b)	Hvdrogen bo	nding	
	(\mathbf{c})	Its neutral natur	e		(b)	Dissociation	in wat	er
396	Alco	hols are isomeric	with		(4)	2 1000 010000		
0 9 0.	(a)	Acids	(b)	Ethers	(c)	Esters	(d)	Aldehvdes
397.	Read	ction of t-butyl b	comid	e with sodiu	m methoxid	le produces:	()	j i i i
	(a)	Isobutane			(b)	Isobutylene		
	(c)	Sodium t-butoxi	ide		(d)	t-butyl methy	l ethe	r
398.	Deh	vdration of ethand	olgive	s:		j i i j		
	(a)	Acetic acid	(b)	Ethane	(c)	Ethvlene	(d)	Acetvlene
399.	Whi	ch alcohol is mos	t acidi	ic:	(-)	j	()	
	(a)	Methanol			(b)	Ethanol		
	(c)	Isopropyi alcoho	ol		(d)	t-butyl alcoho	ol	
400.	Metl	hylated spirit is:				5		
	(a)	Methanol contai	ining s	ome pyridine	e (b)	Ethanol conta	aining	some methanol
	(c)	Pure methanol	0-	г <i>у</i>	(d)	95% methan	ol	
401	The	end product (C)	ofthe	following se	auence is:			
	CH	$Br \xrightarrow{KCN(adc.)} ($	(A)—	$\xrightarrow{\text{H}_2\text{O}^+}$ (B)-	$\xrightarrow{\text{LiAlH}_4} C$	2		
	(a)	СН ₃ СНО	(b)	CH ₃ CH ₂ O	H (c)	CH ₃ COCH ₃	(d)	CH ₄

402. When isopropyl alcohol vapours are passed over heated copper it gives: (a) Acetone (b) Ethyl alcohol (c) Methyl alcohol (d) Acetaldehyde 403. 2 mole of ethanol are burnt. The amount of CO₂ obtained will be: (a) 132 g (b) 44 g (c) 176 g (d) 88 g 404. The product formed in the following reaction $C_6H_5 - O - CH_3 + HI \longrightarrow are :$ (a) C_6H_5OH and CH_3I (b) C_6H_5I and CH_3OH (d) C_6H_6 and CH_3OI (c) $C_6H_5CH_3$ and HOI 405. In the reduction, $R-CHO+H_2 \longrightarrow RCH_2OH$ the catalyst used is: (a) Ni (b) Pd (c) Pt (d) Any of these 406. Reaction of $CH_2 - CH_2$ with RMgX followed with hydrolysis produces: (b) RCH_2CH_2OH (c) $RCHOHCH_3$ (d) RCH=CHOH(a) RCHOHR 407. An isomer of ethanol is: (a) methanol (b) diethyl ether (c) dimethyl ether (d) acetone 408. Which of the following is a primary alcohol? (a) Butan-2-ol (b) Propan-2-ol (d) 4,5-dimethyl hexan-4-ol (c) Butan-1-ol 409. The general molecular formula of homologous series of alkanols is : (a) $CnH_{2n+2}O$ (b) $CnH_{2n}O_{2n}$ (c) $CnH_{2n}O$ (d) $C_{n}H_{2n-2}O$ 410. Benzyl amine reacts with nitrous acid to form (a) azobenzene (b) benzene (c) benzyl alcohol (d) phenol 411. Strength of acidity is in the order : OH OH OH OH NO NO₂ NO (I) (II) (III) (IV) (a) II > I > III > IV(b) III > IV > I > II(c) I > IV > III > III(d) IV > III > I > II412. Phenol reacts with Br_2 in CS_2 to give : (a) o-bromo phenol (b) m-bromo phenol (c) o-and p-bromo phenol (d) 2, 4, 6-tri bromo phenol

l

423.	CH ₃ CH ₂ OH can be converted to CH ₃ OH, step	p -I involves following Hofmann's
	(a) astalytic hydrogeneticn	
	(a) Catalytic hydrogenation (b) By treatment with LiA1 H	
	(c) treatment with pyridinium chlorochromat	A
	(d) treatment with acidified K Cr O	e
	(d) treatment with a channel $\mathbf{K}_2 = \mathbf{K}_2 = \mathbf{K}_2$	
424.	The most suitable reagent for the conversion	of $RCH_2OH \longrightarrow RCHO$ is
	(a) PCC (Pyridinium chloro chromate)	(b) $KMnO_4$
125	(c) $K_2 C \Gamma_2 O_7$ The red coloured compound formed during V	(d) CIO_3
423.	The red coloured compound formed during v	ictor - Meyer's test for ethanoris
	(a) $CH_3 - C - NO_2^- Na^+$	(b) $CH_3 - C - NO_2$
	∥ NOH	$^{\text{II}}$ NO ⁻ Na ⁺
	(c) $CH_3CH = NOH$	(d) CH_3CH_2NHOH
426.	Which of the following is most a acidic?	
	(a) Benzyl alcohol (b) Cyclohexanol	(c) Phenol (d) m-chlorophenol
427.	Which one of the following is not expected to	undergo iodoform reaction?
	(a) Propan-2-ol	(b) Ethanol
	(c) Diphenyl methanol	(d) Butan-2-ol
428.	Among following four compounds	
	(1) phenol	(II) p-methyl phenol
	(iii) meta-nitro phenol	(IV) p-nitro phenol
120	(a) $1V > 111 > 1> 11$ (b) $111 > 1V > 1> 11$ Plantal and an it function of a state with a size $11 > 10$	(c) $1 > 1V > 111 > 11$ (d) $11 > 1> 111 > 1V$
429.	Phenoi, when it first reacts with conc. H_2SO_4	and then with cone. HNO_3 gives
	(a) microbenzene	(d) n nitronhonol
120	(c) pictic acid The major product obtained on interaction of	(d) p-Introphenor fphonol with NaOH and CO is
430.	[Kolbe - Schmitt reaction]	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$
	(a) Salicyaldebyde (b) Salicylic acid	(c) phthalic acid (d) benzoic acid
421		RedP+HI 2X H OLVI
431.	In the following reaction $C_2H_5OC_2H_5 + 4H -$	$2X + H_2O', X'$ is
422	(a) ethane (b) ethylene	(c) butane (d) propane
432.	o-nitrophenol is less soluble in water than m-a	and p-nitrophenol because
	(a) o-nitrophenol shows intramolecular H-bo	onding
	(b) 0-nitrophenol snows intermolecular H-bo	naing
	(d) melting point of o-nitrophenol is less that	in those of m- and n-nitronhenol
433	Which of the following compounds can be use	ed as antifreeze in automobile radiators?
155.	(a) Methyl alcohol (b) Ethane-1, 2-diol	(c) Nitrophenol (d) Ethyl alcohol
434.	Acid catalysed hydration of propene except e	thane leads to the formation of
	(a) primary alcohol	(b) propan-2-ol
	(c) mixture of primary and secondary alcoho	ol propane
	(d) mixture of secondary and tertiary alcoho	ol propan-1-ol

UNI	T - XII	
435.	Reagent used for the oxidation of allyl alcoh	ol to acrolein is
	(a) KMnO_4 (b) H_2O_2	(c) Active MnO_2 (d) OsO_4
436.	Formic acid and acetic acid can be distingu	ished by
	(a) Baeyer's reagent	(b) NaHCO ₃
	(c) Tollen's reagent	(d) Collin's reagent
437.	Which of the following compounds does not	t have a carboxyl group ?
	(a) Benzoic acid	(b) Palmitic acid
	(c) Picric acid	(d) Oleic acid
438.	The end –product in the sequence of reaction	on $R - X \xrightarrow{KCN} A \xrightarrow{dil.NaOH} B$ is
	(a) an alkane	(b) a carboxylic
	(c) sodium alkanoate	(d) saponification
439.	Monocarboxylic acids show functional isom	erism with
	(a) esters (b) alcohols	(c) ethers (d) aldehydes
440.	Electrolysis of potassium salt of maleic acid	to ethyne is known as
	(a) Wurtz's reaction	(b) Clemmensen's reduction
	(c) Kolbe's reaction	(d) Sabatier senderen's reactions
441.	HVZ reaction is used to prepare	
	(a) aldehyde (b) ketones	(c) primary amine (d) bromo acids
442.	Acetamide is	
	(a) amphoteric (b) acidic	(c) basic (d) neutral
443.	Ammonium formate on heating gives	
	(a) formamide	(b) ammonium acetate
	(c) formic acid	(d) acetamide
444.	The general formulae of aldehyde and keton	ne is
	(a) $C_n H_{2n+2} O$ (b) $C_n H_{2n} O$	(c) $C_n H_{2n-2} O$ (d) $C_n H_{2n} O_2$
445.	In Rosenmund reduction the catalyst used	Pd-BaSO ₄ to prepare
	(a) RCHO (b) RCOR	(c) RCH_2OH (d) none of these
446.	A mixture of formaldehyde and benzaldehy	de in presence of NaOH gives
	(a) benzyl accohol and sodium formate	(b) sodium benzoate and methyl alcoho
	(c) sodium benzoate and sodium formate	(d) benzyl alcohol and methyl alcohol.
447.	The function of conc. H_2SO_4 in esterificatio	n process is
	(a) catalyst	(b) dehydrating agent
	(c) hydrolysing agent	(d) none of these
448.	Which of the following do you consider to b	e suitable for obtaining acetone?
	(a) Heating $CH_3CH_2CH_2OH$ with acidic	Na ₂ Cr ₂ O ₇
	ОН	
	(b) Passing CH_3CHCH_3 over heated cop	per
	(c) Oxidation of CH ₃ CH ₂ CH ₃ with conce	ntrated HNO ₃
	(d) Heating $CH_{3}CH = CH_{3}$, with dilute H_{3}	SO ₄
	- 5 2 2	

l

449.	Acetone reacts with HCN to form a cyanoh	drin. It is an example of						
	(a) Electrophilic addition reaction	(b) Electrophilic substitution reacti	on					
	(c) Nucleophilic addition reaction	(d) Nucleophilic substitution reaction	on					
450.	Which of the following reagents will react re	adily with both aldehydes and ketones	s?					
	(a) Grignard reagent	(b) Fehling's reagent						
	(c) Tollen's reagent	(d) Schiff's reagent						
451.	Acetone undergoes reduction with hydrazin propane. This reaction is known as	e is the presence of NaOH to form						
	(a) Clemmensen reduction	(b) Wolf-Kishner reduction						
	(c) Rosenmund reduction	(d) Reformatsky reduction						
452.	Which of the following is oxidised to the cor	responding carbonyl compound?						
	(a) propan-2-ol	(b) o-nitrophenol						
	(c) phenol	(d) 2-methyl-propan-2-ol.						
453.	The IUPAC name of $CH_3COCH (CH_3)_2$ is							
	(a) 3-methylbutan-2-one	(b) Isopropyl methyl ketone						
	(c) 2-methyl-3-butanone	(d) 4-methyl isopropyl ketone						
454.	Which of the following molecule yields aceto	ne on ozonolysis ?						
	(a) 3-methyl-l-butene	(b) Cyclopentane						
	(c) 2-methyl but-l-ene	(d) 2-methyl but-2-ene.						
455.	In the following sequence of reactions							
	$CH_3 - CH_2 - OH \xrightarrow{P+I_2} A \xrightarrow{Mg} B \xrightarrow{HCHO} C \xrightarrow{H_2O} D$ the compound D is							
	$CH_3 - CH_2 - OH \xrightarrow{P+I_2} A \xrightarrow{Mg} B \xrightarrow{Hg}$	$C \longrightarrow C \longrightarrow D$ the compound D	is					
	$CH_3 - CH_2 - OH \xrightarrow{P+I_2} A \xrightarrow{Mg} B \xrightarrow{H} B$ (a) n-propyl alcohol	$C \longrightarrow C \xrightarrow{H_2O} D$ the compound D (b) propanal	is					
	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal	$C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol	is					
456.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan	$CHO \rightarrow C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol pate on iodoform test ?	is					
456.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde	$C \longrightarrow C \longrightarrow D$ the compound D (b) propanal (d) n-butyl alcohol pate on iodoform test ? (c) butanone (d) acetophene	is					
456. 457.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will	$C \longrightarrow C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol pate on iodoform test ? (c) butanone (d) acetophenol lreact with acetone to give a product	is					
456. 457.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$	$C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol pate on iodoform test ? (c) butanone (d) acetophene react with acetone to give a product	is one					
456. 457.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{I}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$	$C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol pate on iodoform test ? (c) butanone (d) acetophene react with acetone to give a product (b) $(CH_3)_3N$	is one					
456. 457.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$	$CHO \rightarrow C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) butanone (d) acetophene lreact with acetone to give a product (b) $(CH_3)_3N$ (d) $C_6H_5NHNH_2$	is					
456. 457. 458.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$ Aldehydes and ketones can be reduced to a	$C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) butanone (d) acetophene (f) acetop	is					
456. 457. 458.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NH_{2}H_{5}$ Aldehydes and ketones can be reduced to a (a) Clemmensen's reduction	$C \xrightarrow{H_2O} D \text{ the compound } D$ (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) propanal (f) acetophene (f) acetop	is					
456.457.458.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{I}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$ Aldehydes and ketones can be reduced to a (a) Clemmensen's reduction (c) Meerwein-Pondorf Verly reduction	$C \xrightarrow{H_2O} D \text{ the compound } D$ (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) propanal (f) n-butyl alcohol (f) propanal (f) n-butyl alcohol (f) propanal (f) n-butyl alcohol (f) acetophene	is					
456.457.458.459.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$ Aldehydes and ketones can be reduced to a (a) Clemmensen's reduction (c) Meerwein- Pondorf Verly reduction Identify the final product (Z) in the following	$C \xrightarrow{H_2O} D \text{ the compound } D$ (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) other end of the component of the	is					
456.457.458.459.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propant (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$ Aldehydes and ketones can be reduced to a (a) Clemmensen's reduction (c) Meerwein- Pondorf Verly reduction Identify the final product (Z) in the following $Me_{2}CO + HCN \rightarrow X \xrightarrow{H_{3}O^{+}} Y \xrightarrow{H_{2}SO_{4}} A$	$C \xrightarrow{H_2O} D \text{ the compound } D$ (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) other on iodoform test ? (f) butanone (f) acetophene (f) acetoph	is					
456.457.458.459.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$ Aldehydes and ketones can be reduced to a (a) Clemmensen's reduction (c) Meerwein- Pondorf Verly reduction Identify the final product (Z) in the following $Me_{2}CO + HCN \rightarrow X \xrightarrow{H_{3}O^{+}} Y \xrightarrow{H_{2}SO_{4}} A$ (a) (CH ₃) ₂ C(OH) COOH	$CHO \rightarrow C \xrightarrow{H_2O} D$ the compound D (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) butanone (d) acetophene (f)	is					
456.457.458.459.	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propan (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$ Aldehydes and ketones can be reduced to a (a) Clemmensen's reduction (c) Meerwein- Pondorf Verly reduction Identify the final product (Z) in the following $Me_{2}CO + HCN \rightarrow X \xrightarrow{H_{3}O^{+}} Y \xrightarrow{H_{2}SO_{4}} A$ (a) $(CH_{3})_{2} C(OH) COOH$ (c) $HOCH_{2} CH (CH_{3})COOH$	$C \xrightarrow{H_2O} D \text{ the compound } D$ (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) propanal (f) n-butyl alcohol (f) acetophene (f) a	is					
 456. 457. 458. 459. 460. 	$CH_{3} - CH_{2} - OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg}{ether} B \xrightarrow{H}$ (a) n-propyl alcohol (b) butanal Which of the following gives sodium propant (a) Acetone (b) Acetaldehyde Among the following compounds, which will containing $\sum C = N - ?$ (a) $C_{6}H_{5}NH_{2}$ (c) $C_{6}H_{5}NHC_{6}H_{5}$ Aldehydes and ketones can be reduced to a (a) Clemmensen's reduction (c) Meerwein- Pondorf Verly reduction Identify the final product (Z) in the following $Me_{2}CO + HCN \rightarrow X \xrightarrow{H_{3}O^{+}} Y \xrightarrow{H_{2}SO_{4}} \xrightarrow{A}$ (a) $(CH_{3})_{2} C(OH) COOH$ (c) $HOCH_{2} CH (CH_{3})COOH$ Which of the following gives Cannizzarro's	$CHO \rightarrow C \xrightarrow{H_2O} D \text{ the compound } D$ (b) propanal (d) n-butyl alcohol (d) n-butyl alcohol (e) otte on iodoform test ? (f) butanone (f) acetophene (f) ac	is					

461.	. Which one of the following will not react with ammoniacal AgNO ₃ solution?						
	(a) Acetylene (b) Acetone	(c)	Acetaldehyde (d) formic acid				
462.	Cannizzarro's reaction is not given by —						
	(a) formaldehyde	(b)	acetaldehyde				
	(c) trichloroacetal dehyde	(d)	benzal dehyde.				
463.	Aldehydes reacts with hydroxylamine to produ	ice –	_				
	(a) oxime	(b)	alcohol				
	(c) hydrazone	(d)	Phenyl hydrazone				
464.	Which of the following on treatment wit	th 5	60% aqueous NaOH undergoes				
	disproportionation ?	a					
	(a) $C_{\rm c}H_{\rm c}CHO$	(b)	CH ₃ -CH ₂ -CH ₂ CHO				
	(c) $CH_3 - COCH_3$	(a)	C ₆ H ₆ CH ₂ -CHO				
465.	Propyne $\xrightarrow{\text{HgSO}_4}_{\text{H}_2\text{SO}_4}$ A, the compound A is						
	(a) Propanal (b) Propane	(c)	Propene (d) propanone				
466.	The reagent used for the separation of acetal de	ehy	de and acetophenone is				
167	(a) NaHSO ₃ (b) $C_6H_5NHNH_2$	(c)	NH_2OH (d) $NaOH/I_2$				
467.	Acetic acid on heating in presence MinO gives	(h)	60				
	(a) CH_3COCH_3 (c) HO	(U) (d)	cO ₂				
468	A_{2} Among HCHO, CH CHO, and C H CHO, which	(u) •hw	ill under go aldol type condensation				
+00.	(a) HCHO (b) CH CHO	л w (с)	CH COCH (d) (b) and C				
469.	Rosenmund's reduction fails to give	(0)	$CH_3 COCH_3$ (d) (d) and C				
	(a) Formaldehyde (b) acetone	(c)	acetaldehyde (d) (a) & (b)				
470.	Which of the following compounds will under a	30 S(elf aldol .condensation with cold dil.				
	NaOH ?	_					
	(a) HCHO	(b)	CH ₃ COCH ₃				
	(c) CH ₃ CHO	(d)	(a) and (b)				
471.	In the reaction $CH_2O + CH_3MgI \longrightarrow A$	A—	$H_{2O} \rightarrow B + Mg(OH)I$. What are				
	A and B?						
	(a) $CH_3OMgI + CH_3OH$						
	(b) $CH_3 - CH_2 - OMgI + C_2H_5O - C_2H_5$						
470	(c) $CH_3-CH_2-OMgI + CH_3-CH_2-OH$	(d)	CH_3 - CH_2I + CH_3CH_2 - OH				
472.	Which of the following gives an aldehyde on dr	y dı	stillation?				
	(a) Calcium formate + Calcium acetate						
	(b) Calcium acetate + Calcium benzoate	(d)	Calcium benzoata				
		(u)	Calcium benzoate				
	СНО						
473	\bigcirc + 2 $\xrightarrow{\text{AICl}_3}$						
175.	HCI / U						
	Identify the reactiant -						
	(a) H_2O (b) HCHO	(c)	CO (d) CH ₃ CHO				
474.	Pentan-3-ol on reaction with aluminium tertia	ary b	outoxide in the presence of acetone				
	gives						
	(a) 3- pentanal (b) 2-pentanal	(c)	pentan-3-one (d) 2-pentanone				

483.	The g	general formula C	$_{n}H_{2n}O_{2}$ could be f	òr open ch	ain		
	(a)	dialdehydes		(b)	diketones		
	(c)	Alkenediol		(d)	diols		
484.	In H-	-COO ⁻ the two C	-O bonds are fou	ind to be e	qual of length	. Wha	at is the reason
	for th	nis ?					
	(a)	the anion is obtain	ned by the remova	al of a prot	on from the ac	eid mo	olecule.
	(b)	the electronic orb	itals of carbon ato	om are hyb	oridised.		
	(c)	the C=O bond is	weaker than C—	-O bond.			
	(d)	the anion H–COC) has two resona	ting struct	ures.		
485.	The i	intermediate forme	ed during the react	tion of R-	CONH ₂ with	Br_2 as	nd KOH are :
	(a)	RCONHBr and I	RNCO	(b)	R–NHCOBr	and	RNCO
	(c)	RNHBr and RCC	DNHBr	(d)	R-CONH ₂		
486.	The-	OH group of an a	lcohol or-COOH	group of	a carboxylic a	cid ca	in be replaced
	by us	ing :					
	(a)	HOCI	(b) Cl_2	(c)	HCl	(d)	PCl ₅
487.	The	correct order of ind	creasing acid stre	ngth of the	compounds.	~ ~ ~	
	(A)	CH ₃ COOH		(B)	CH ₃ O CH ₂ -	COO	H
	(C)	CF.COOH		(D)	M_{e} > CHC(ЮН	
	(a)	3 $\mathbf{P} < \mathbf{D} < \mathbf{A} < \mathbf{C}$		(b)	M_e > check	D	
	(a)	B < D < A < C		(0) (b)	D < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C < A < C <	D B	
488	(c) Cons	der the acidity of	the following car	(u) boxylic aci	A > D > C >	D	
+00.	(i)	PhCOOH	the following car	(ii)	o-NO C H	-00	ОН
	(1) (iii)	n-nitro C H COC)H	(iv)	m-nitro C H	$^{4}CO($)H
	Whic	ch of the following	order is correct	(11)		4000	
	(a)	i > ii > iii > iv	(b) $ii > iv > iii >$	≥i (c)	ii > iv > i > ii	i (d)	ii > iii > iv > i
489.	Inas	set of reaction ace	tic acid yields a p	roduct (c)			
	CH ₃	$COOH + PCl_5 \rightarrow$	$A \xrightarrow{C_6H_6} B -$	C ₂ H ₅ MgBr	\rightarrow (C) then the	prod	uct C is
	(a)	CH ₃ CH (OH) C,	H ₅	(b)	CH ₃ COC ₆ H	5	
			-		СН	-	
	(c)	CH.CH (OH) C.	H.	(d)	> C(OH)	-C _c H _c
	(0)	0113011 (011) 06		(4)	CH ₃)	- 6 5
490.	Whic	ch of the following	compounds will f	orm silver	mirror with [A	g(NI	H,),]OH?
	(a)	НСООН	(b) CH ₃ COOH	I (c)	CH ₃ COCH ₃	(d)	CH ₃ OH
491.	The e	end product 'Z' in	the set of reaction	ns is	5 5		2
	CH ₃	$\text{COOH} \xrightarrow{\text{NH}_3} X$	$X \xrightarrow{\Delta} Y \xrightarrow{P_2O_5} -$	→Z			
	(a)	CH.	(b) CH.OH	(c)	CH.CN	(d)	CH.NC
492.	Ident	tify the correct ord	er of boiling point	t of the foll	owing compo	unds.	3
	(i)	CH_CH_CH_CH	–ОН	(ii)	CH(CH_)	-CH	0
	(iii)	CH,CH,CH,-CC	ЮН	()	3 2/2	-	
	(a)	i > ii > iii	(b) $iii > i > ii$	(c)	iii>ii>i	(d)	none of these
493.	Ethy	lacetate reacts with	n sodium/alcohol	gives		、 /	
	(a)	ethanol	(b) methanol	(c)	but-2-ol	(d)	butan-1-ol

494.	Which reaction is suitable for the preparation	ofo	-chloro acetic acid ?
	(a) HVZ reaction	(b)	Nefreaction
	(c) Stephen's reaction	(d)	Eerkin Condensation
495.	Further oxidation of which compound is not p	oossi	ble?
	(a) CH ₃ –COOH	(b)	CH ₃ –COCH
	(c) CH ₃ CHO	(d)	CH ₃ -CH ₂ -OH
496.	The acid which contains an aldehyde group is		
	(a) acetic acid	(b)	formic acid
	(c) benzoic acid	(d)	Propionic acid.
497.	The reagent which does not give acid chloride	e on t	reating with a carboxylic acid is
	(a) PCl_5 (b) Cl_2	(c)	$SOCl_2$ (d) PCl_3
UNI	Г - XIII		
498.	Primary amine is not given by		
	(a) reduction of amides	(b)	reduction of nitroalkanes
	(c) reduction of alkyl cyanides	(d)	reduction of isonitriles
499.	Primary and secondary amines are distinguish	ed by	у
	(a) Br ₂	(b)	NH ₃
	(c) $\left[Ag(NH_3)_2 \right]^+$	(d)	CHCl ₃ /KOH
500	Which amine gives on alcohol with nitrous ac	id?	
	(a) $CH - NH$ (b) $(CH) NH$	(c)	(C H) N (d) none of these
501.	The reactive species during nitration of benzet	ne is:	
	(a) NO_{2}^{+} (b) NO_{2}^{-}	(c)	$N_{a}O_{a}$ (d) HNO _a
502.	Chloropicrin is obtained by the reaction of		2 4 7 3
	(a) steam on CCl ₄	(b)	nitric acid on chlorobenzene
	(c) chlorine on picric acid	(d)	nitric acid on chloroform
503.	Acetanalide on nitration followed by alkaline l	nydro	olysis gives
	(a) o-nitro acetanilide	(b)	p-nitro aniline
	(c) m-nitro aniline	(d)	2,4,6 trinitroaniline
504.	Nitration is easy in case of		
	(a) toluene (b) nitrobenzene	(c)	chlorobenzene (d) sulpho benzene
505.	Among the following weakest base is:		
	(a) $C_6H_6CH_2NH_2$	(b)	C ₆ H ₆ CH ₂ NHCH ₃
	(c) $O_2N-CH_2NH_2$	(d)	CH ₃ NHCHO
506.	Reduction of nitroalkane in neutral medium is	mad	e with
	(a) H_2/Ni (b) LiA/H_4	(c)	Zn/NH ₄ Cl (d) NaBH ₄
507.	Reaction of acetamide with bromine water an	d K(OH gives:
	(a) CH ₃ COOH	(b)	CH ₃ CH ₂ NH ₂
	(c) CH_3COONH_4	(d)	CH ₃ NH ₂
508.	Which of the following amines cannot be acyt	ylate	d using acetyl chloride ?
	(a) Methylamine (b) Dimethylamine	(c)	Trimethylamine (d) Ethylamine
1			

509.	The colour of the product obtained by reacting	g 2°	nitroalkane with HNO, is:
	(a) white (b) blue	(c)	red (d) yellow
510.	Hinsberg's reagent is:		
	(a) benzene sulphonyl chloride	(b)	benzene sulphonic acid
	(c) phenyl isocyanide	(d)	benzene sulphonamide
511.	Glucose and fructose are :		
	(a) optical isomers	(b)	functional isomers
	(c) chain isomers	(d)	position isomers
512.	Which of the following has higher boiling point	ıt?	
	(a) CH ₃ OH	(b)	CH ₃ -CH ₂ OH
	(c) CH ₃ CH ₂ NH ₂	(d)	CH ₂ =CH–NH,
513.	Bromination aniline in aq medium gives	_	
	(a) 2-bromo aniline	(b)	2, 4 dibromo benzene
	(c) 2, 4, 6 tribromo benzenamine	(d)	none of these
514.	Which of is not confirmed by dye test?		
	(a) naphthol (b) naphthaline	(c)	phenol (d) aniline
515.	For eliminating -NH, group from benzene rin	ig the	reagent(s) necessary
	(a) $NaNO_2 + HCl^2$ (b) H_3PO_2	(c)	a & b (d) ethylalcohol
516.	Towards S_{E} reaction the most reactive is		
	(a) nitrobenzene	(b)	aniline
	(c) aniline hydrochloride	(d)	N-acetylaniline
517.	Which of the following is most basic?		
	(a) Benzylamine (b) Aniline	(c)	Acetanilide (d) p-nitroaniline
518.	When ethyl amine is treated with CH ₃ MgBr, t	he pr	roduct is :
	(a) CH ₂ CH ₂	(b)	CH
	(c) CH ₃ CH ₂ CH ₃	(d)	CH,CH,CH,CH,
519.	When Aniline is heated with Conc. H_2SO_4 at 4	455-4	475K, it forms :
	(a) Aniline hydrogen sulphate	(b)	m-Aminobenzene sulphonic acid
	(c) Benzene sulphonic acid	(d)	Sulphonailic acid
520.	Which of the following compound will give dy	e tes	t?
	(a) Aniline	(b)	Methyl amine
	(c) Diphenyl amine	(d)	Ethylamine
521.	Which of the fallowings does not react with H	linsb	erg's reagent ?
	(a) $C_{2}H_{5}NH_{2}$ (b) $(C_{2}H_{5})_{2}NH$	(c)	$(C_{2}H_{5})_{3}N$ (d) $CH_{3}NH_{2}$
522.	The reagent used for separation of acetaldehy	yde a	nd acetophenone as
	(a) NaHSO ₃ (b) $C_6H_5NHNH_2$	(c)	NH_2OH (d) $I_2 + NaOH$
523.	Aniline is prepared in presence of Sn/Conc H	ICl fi	rom
	(a) benzene (b) nitrobenzene	(c)	dinitrobenzene (d) none of these
524.	Gabriel's synthesis is used mostly for the prep	arati	on of aliphatic
	(a) l^0 amine (b) 1° alcohol	(c)	3° amin (d) 3° alcohol
525.	Which of the following is the strongest base in	n aqu	eous solution?
	(a) Trimethylamine (b) Dimethylamine	(c)	Methylamine (d) Aniline
526.	Libermann nitroso reaction is for detection of	·	
	(a) Secondary amine	(b)	aniline
	(c) CH_3NH_2	(d)	2-nitropropane

Unit	- XV				
527.	Terylene is				
	(a) Polyamide (b) Polyster	(c)	Polystyrene (d) P	olyacrylonitrile
528.	Caprolactum polymerises to give				
500	(a) Nylon-6 (b) Buna-S	(c)	Glypta	(d)	Teflon
529.	Which of the following is a copolymer?		D 1 4		DEDE
	(a) Buna-S (b) PAN	(c)	Polythene	(d)	PTFE
530.	Rayon is a				
	(a) natural polymer	(b)	semi-synthetic	c poły	ymer
	(c) synthetic polymer	(d)	none of these		
531.	Which of the following is not a thermoplastic	?			
	(a) Polythene (b) Bakehte	(c)	Nylon 6,6	(d)	Teflon
532.	Which is not a condensation polymer?				
	(a) nylon-6,6	(b)	glyptal		
	(c) dacron	(d)	poly tetra fluo	ro et	hene
533.	Natural rubber is a polymer of				
	(a) butadiene (b) ethylene	(c)	isoprene	(d)	neoprene
534.	Which of the following is a bio- degradable p	olym	er?		
	(a) cellulose (b) polythene	(c)	PVC	(d)	Nylon-6
535.	Terylene is a condensation polymer of, ethyle	ne gly	/col and		
	(a) benzoic acid	(b)	phthalic acid		
	(c) salicylic acid	(d)	terephthalic ad	cid	
536.	Vulcanisation of rubber is carried out by addin	ng			
	(a) sulphur (b) carbon	(c)	ozone	(d)	phosphorus
537.	Which is not a biopolymer?				
	(a) starch (b) protein	(c)	orlon	(d) 1	nucleic acid
538.	Catalyst used in olefin polymerisation				
	(a) Zeigler - Natta catalyst	(b)	Wilkinson cata	alyst	
	(c) Raney nickel	(d)	Resin		
539.	Which of the following fibres are made of po	lyam	ides ?		
	(a) Dacron (b) Orlon	(c)	Nylon	(d)	Rayon
540.	HDP is an example of polymer.		-		-
	(a) Linear chain (b) branched chain	(c)	crossed chain	(d)	coupling
541.	Neoprene is a polymer of			()	1 0
	(a) chloroprene (b) chloroquine	(c)	propylene	(d)	isoprene
542.	Natural rubber is a polymer of	. /		、 /	•
	(a) cis-isoprene (b) neoprene	(c)	chloroprene	(d)	trans-isoprene
543.	Which of the following is not an example of	addit	ion polymer?	(-)	F
	(a) Polystyrene (b) Polyethylene	(c)	Polypropylene	e (d)	Tervlene
		(-)	Jr FJ-Sin	(-)	<u> </u>

544.	Which one is a protein fibre ?				
	(a) Rayon (b) Polyester	(c)	Silk	(d)	Cotton
545.	Orlon is a polymer of				
	(a) Styrene	(b)	Vinyl chlorid	e	
	(c) Acrylonitrile	(d)	Butadine and	d adip	ic acid
546.	Nylon - 66 is obtained from				
	(a) Hexamethylenediamine and adipic acid	(b)	Phenol and for	ormal	dehyde
	(c) Propylene and adipic acid	(d)	Adipic acid a	and pł	nthalic acid
547.	Bakelite is obtained by				
	(a) Substitution Reaction	(b)	Condensatio	n Rea	ction
	(c) Addition Reaction	(d)	Elimination F	Reaction	on
548.	Caprolactum can be obtained from:				
	(a) Benzaldehyde (b) Cyclohexane	(c)	Benzopheno	ne (d) Adipicacid
549.	A polymer of prop-2-ene nitrile is called:				
	(a) Saran (b) Orlon	(c)	Dacron	(d)	Tetron
550.	Peptide bond is a key feature in:				
	(a) Polysaccharide (b) Proteins	(c)	Nucleotide	(d)	Vitamins
551.	Synthetic human hair wigs are made from a Co and is called:	-/ poly	mer of vinyl ch	nloride	e and acrylonitrile
	(a) PVC (b) Polyacrylonitrile	e (c)	Cellulose	(d)	Dynel
552.	The widely used PVC is a polymerised produced	uct of			
	(a) $CH_2 = CH_2$	(b)	$CH_2 = CCl_2$		
	(c) CH_2ClCH_2Cl	(d)	$CH_2 = CHC$	1	
553.	Which of the following is a step growth polyn	ner:			
	(a) Bakelite (b) Polyethylene	(c)	Teflon	(d)	PVC
554.	Which of the following is incorrect about pol	ymer	?		
	(a) thermosetting polymers are hard and br	ittle			
	(b) Chlorophyl has molecular formula C_{55}	$H_{72}O_5$	N ₄ Mg		
	(c) Polymers have molecularmass in the or	rder 10	$0^{3}-10^{7}$ u		
	(d) Teflon is also known as PMMA				
555.	The catalyst used in the manufacture of polyt	thene t	by Zeigler met	hod 1s	
	(a) Titanium tetrachloride and triphenyl alur	niniun	1		
	(b) Titanium tetrachloride and triethyl alumi	nium			
FFC	(c) I itanium dioxide	(d)	T itanium isop	peroxi	de
556.	I hermoplastics are:	(1)	0.0	1, 1	<i>.</i> -
	(a) Linear polymers	(D) Frad al	Solien of me	su on r	leating
	(d) All	an eu Sl	nape		
557	(u) All Which are true for elastomers:				
557.	(a) These are synthetic notymers possessin	σ elact	icity		
	(h) These possess very weak intermolecul	5 clast ar for	ces of attracti	ons h	etween nolvmer
	chains	ui 101		0115 0	et ween porymer
	(c) Vulcanised rubber is an example of elas	tomer		(d)	All of these

558.	3. Which of the following is not a biodegradable polymer?							
	(a) PH	IBV	(b)	Nylone-2-nylon	-6 (c)) pectins	(d)	Teflon
Unit	- XVI							
559.	Which c	of the followin	ıg is ar	ntihistamine?				
	(a) Ra	nitidine	(b)	Lansoprazole	(c)	Terfenadine	(d)	Luminal
560.	Which of	of the followi	ng is a	a tranquilizer a dru	ig to 1	treat mental di	sease	
	(a) Na	aproxen			(b)	Tetracyclin		
	(c) ch	lorophenirami	ne		(d)	Equanil		
561.	Which i	s used as pain	killer	?				
	(a) Ar	ntibiotic	(b)	Analgesic	(c)	Antipyretic	(d) A	Antioxidants
562.	Structur	ally biodegrad	lable c	letergents should	conta	in		
	(a) no	rmal alkyl cha	in		(b)	branched alky	/l cha	in
	(c) ph	enyl sidechain			(d)	cyclohexyl sic	le cha	ain
563.	Which c	of the following	g is/ar	e neurologically a	ctive of	drugs?		
	(a) Ar	ntibiotic	(b)	Analgesic	(c)	Antipyretic	(d)	Antioxidants
564.	The oxi	dant used as a	ntisep	tic is				
	(a) KN	MnO ₄	(b)	KBrO ₃	(c)	CrO ₃	(d)	KNO ₃
565.	Which c	of the following	g is a a	intihistamine drug	?			
	(a) Cij	profloxacin			(b)	Chloroquine		
	(c) Ch	loromophenic	col		(d)	Chlorophenir	amine	emaleate
566.	A drug	that is antipyre	etic as	well as analgesic	is			
	(a) Ch	lloroquin	(b)	Penicillin	(c)	paracetamol		
	(d) Ch	loropromazin	e hydr	ochloride				
567.	Antisep	tics and disinfe	ectants	s generally contair	1.	~		
	(a) Ac	etamide grou	р		(b)	Chlorophenol	lic gro	oup
	(c) Et	her function			(d)	Nitrogroup		
568.	Morphi	ne is	(1)	A ("1 *)*	()	A 1 ·	(1)	A /* 1 *
5.00	(a) Ar	tiseptic	(b)	Antibiotics	(c)	Analgesic	(d)	Antimalaria
569.	Novalgi	in is a commoi	n name	e oi	(a)	Autius motio	(4)	Autimalaria
570	(a) Ar		(D)	Antibiotic	(c)	Antipyretic	(a)	Antimalaria
570.	The long	owing compo	lina is					
				O II				
				C - C) - Cl	H_3		
					H			
	(a) Ar	n anti-inflemma	atory o	compound	(b)	Analgesic		
	(c) Hy	pnotic	5	1	(d)	Antiseptic		
571.	Which c	f the followin	g is an	anionic detergent	t?	Ĩ		
	(a) CH	$H_{3}(CH_{2})_{16}$ CH	I,OSC	D ₃ Na	(b)	CH ₃ (CH ₂) ₁₆	$N^+(C)$	H ₃) ₃ Cl ⁻
	(c) C ₄	H ₅ SO ₃ Na	2	2	(d)	none of these		J. J.
	0							

572.	Mee	dicine which is an	antibi	otic is				
	(a)	ampicilin	(b)	aspirin	(c)	calmpose	(d)	chloroquine
573.	Ad	etergent is :						
	(a)	drug			(b)	catalyst		
	(c)	surface active ag	gent		(d)	soap		
574.	Met	tal lauryl sulphate	acts a	S:				
	(a)	Soap	(b)	Disinfectant	(c)	Antiseptic	(d)	Detergent
575.	Dig	estion of fat in inte	estine	is aided by:				
	(a)	Diffusion	(b)	Protection	(c)	Peptization	(d)	Emulsification
576.	Hyc	lrogenation of oils	invol	ves:				
	(a) Saturation of unsturated fatty acids .			(b)	Reaction with oxygen			
	(c) Conversion into fatty acids							
	(d)	Driving of the in	npurit	ies in oil by hydrog	gen ga	IS		
577.	Wh	ich of the followir	ng is n	nolecular disease f	?			
	(a)	Allergy			(b)	Cancer		
	(c)	German measel	es		(d)	Sickel-cell-anaemia		
578.	Salo	ol can be used as:						
	(a)	Antiseptic	(b)	Antipyretic	(c)	Analgesic	(d)	None of these
579.	The	drug which is effe	ective	in curing malaria,	is:			
	(a)	Quinine	(b)	Aspirin	(c)	Analgin	(d)	Equanil
580.	A su	ubstance which ca	in act	both as antiseptic	and d	isinfectant is:		
	(a)	Aspirin	(b)	Chloroxylenol	(c)	Bithional	(d)	Phenol
581.	The	first viral disease	detec	ted in human bein	ig was	5		
	(a)	Cold	(b)	Influenza	(c)	Small pox	(d)	Yellow fever
582.	Her	oin is a derivative	of:					
	(a)	Cocaine	(b)	Morphine.	(c)	Caffeine	(d)	Nicotine
583.	Phe	nacetin is used as						
	(a)	Antipyretic	(b)	Antiseptic	(c)	Antimalarial	(d)	Analgesic
584.	Det	ergents are usuall	y mad	le from products o	obtain	ed by cracking	ofpe	troleum like:
	(a)	Chloroalkanes			(b)	Sulphur com	poun	ds of benzene
	(c)	H_2S			(d)	Polyethylene	deriv	atives
585.	An	antibiotic contains	s nitro	group attached to	o aron	natic nucleus. I	t is:	
	(a)	Penicillin			(b)	Streptomycin	1	
	(c)	Tetracycline			(d)	Chlorampher	nicol	
586.	Var like	ious phenol deriva methylene blue ar	atives, e:	tincture of iodine	e (2-3)	% I in water/al	coho	l) and some dyes
	(a)	Antiseptics	(b)	Disinfectants	(c)	Analgesics	(d)	Antipyretics
	(a)	0.155	(b)	.225	(c)	0.414		(d) 0.732

Additional questions as per original syllabus : A1 (MCQs) Unit - I 587. For an octahedral arrangement the lowest radius ratio limit is (b) .225 (d) 0.732 (a) 0.155 (c) 0.414 588. Which of the following compounds shows stoichiometric defect? (a) FeO (b) NiO (c) FeS (d) ZnS 589. Defects in non-stoichiometric solids are due to (a) metal excess defect (b) anion vacancy (d) all of these (c) extraction in interstitial sites 590. Conductivity of semiconductors is in the order : (a) 10^{-20} to 10^7 ohm⁻¹ m⁻¹ (b) $10^4 - 10^7$ ohm⁻¹ m⁻¹ (c) 10^{-20} to 10^{-10} ohm⁻¹ m⁻¹ (d) $10^{-6} - 10^4$ ohm⁻¹ m⁻¹ 591. Ferrimagnetic substances lose ferromagnetism on heating and become (b) diamagnetic (a) paramagnetic (c) non-magnetic (d) antiferromagnetic 592. Which of the following is diamagnetic? (d) Fe^{3+} (c) Cu^{2+} (a) O_{γ} (b) N, 593. Which of the following does not characterise paramagnetism? (a) weakly attracted by magnetic field (b) These are magnetised in magnetic field (c) They lose their magnetism in the abesence of magnetic field. (d) These have $\overline{e}(s)$ with opposite spin $(\downarrow\uparrow)$ 594. On the basis of magnetic properties, substances are of types. (a) three (b) four (c) five (d) two 595. Ga As (Gallium arsenide) is type of semiconductor. (a) n-(b) h-(c) identical to SiB (d) n, p 596. Which of the following statement is in-correct one? (a) n-type semiconductor are conducting due to movement of $\overline{e}(s)$ (b) p-type conducts due to movement of holes (c) n-p junctions are called diodes. (d) Doping of 'P'(15) in silicon (14) form p-type semiconductor 597. The material used in solar cell contains : (a) Cs Si (c) Sn (d) Ca (b) 598. In stoichiometric defects the ratio of positive and negative ions as indicated by chemical formula of the compound: (a) decreases (b) increases (c) remains same (d) Variable 599. Which of the following is not the characteritic of crystalline solid? (b) They exhibit polymorphism (a) These are anisotropic (c) On melting these become non-crystalline (d) They don't have thermodynamic defects

600.	Which of the following oxide is diamagnetic?								
	(a) V_2O_3 (b) Fe_3O_4 (c) $Cr O_2$ (d) MnO_2								
601.	According to band theory, a metal can have								
	(a) Overlapping band								
	(b) large energy gape between filled and empty band								
	(c) Completely filled band								
	(d) Small energy gap between filled and empty band								
Unit	Unit-II								
602.	. Molecular mass of a solute determined by measurement of osmotic pressure is found to be abnormal is due to								
	(a) the solute is a non electrolyte								
	(b) solute is an electrolyte undergoing dissociation								
	(c) Solute undergoes association in the solution								
	(d) b and c								
603.	Molecular mass of acetic acid (in benzene) determined by colligative property method is observed to be gm mole ⁻¹ .								
	(a) 60 (b) Less than 60 (c) > 60 (d) 59.9								
604.	van't Hoff factor(i) can be expressed as								
	(a) normal molecular mass / abnormal moloecular mass								
	(b) Observed con-gative property/calculated colligative property								
	(c) Total number of moles particles after association (or) dissociation								
	Number of moles particles before association (a) dissociation								
	(d) any one of these.								
605.	In case of electrolyte as solute, the elevation in boiling point is								
	(a) $\Delta T_{b} = iK_{b}$ (b) $\Delta T_{b} = iK_{b}m$ (c) $\Delta T_{b} = iK_{b}M$ (d) $\Delta T_{b} = K_{b}M$								
606.	1:1 electrolyte AB dissociates 50%. So its (i) value is								
	(a) 0.5 (b) 0.05 (c) 1.05 (d) 1.5								
607.	The observed molecular mass is found to be same as theoritical value, so the solute is								
	(a) non-volatile (b) non-electrolyte								
609	(c) the solution is dilute (d) having all of the character 18 group of character The heiling terms ensure of								
608.	water at 1 atm pressures is ($K_b = 0.52 \text{ K kg mol}^{-1}$)								
	(a) 373 K (b) 373.052 K (c) 373.52 (d) none of these								
609.	The van't Hoff factor for a solute that associates in solution –								
	(a) Zero (b) 1.0 (c) less than 1 (d) more than 1								
610.	Which of the following is incorrect ?								
	(a) Molecular mass of NaCl by osmotic pressure method is 29.25								
	(b) Molecular mass of acetic acid in benzene by cryscopy is double of its theoretical value								
	(c) Osmotic pressure of 0.1 M glucose is half of that 0.1 M of NaCl (aq.)								
	(d) Molecular mass HCl is found to be 36.5 both in water and benzene								

611.	1. van't Hoff factor of 0.1M Ba(NO ₃) ₂ (aq.) is 2.74. The degree of dissociation is									
	(a) 87% (b) 78% (c) 74% (d) 27.4%									
Unit	- III									
612.	612. The efficiency of fuel cell, η can be calculated by the relation –									
	(a) $\frac{\Delta G}{\Delta H} \times 100$ (b) $\frac{\Delta H}{\Delta G} \times 100$ (c) $\frac{\Delta H \cdot \Delta G}{100}$ (d) $\Delta H / \Delta G^0$									
613.	The gas evolveed inside the Lechlanche cell is									
	(a) CO_2 (b) NH_3 (c) H_2 (d) H_2O (vap.)									
614.	In Lechlanche cell zinc cylinder acts as anode (–) and ——— acts cathode,									
	(a) NH_4^+ (b) $Mn O_2/C$ (c) carbon (d) Mn_2O_3									
615.	In H_2 – O_2 fuel cell.									
	(a) H_2 is oxidised to water in alkaline medium									
	(b) O_2 is reduced to OH^-									
	 (c) I his cell does not cause pollution. (d) Above features are true for fuel cell 									
616	(d) Above leadures are true for fuer cell In rusting of iron, the compound formed is									
010.	(a) Fe (OH) (b) Fe O x H O (c) FeO 2H O 2H O (d)									
	None of these $(0)^{-1} C_2 C_3 \cdot X H_2 = (0)^{-1} C_2 C_3 \cdot X H_2 = (0)^{-1} C_2 C_2 \cdot 2 H_2 = (0)^{-1} C_2 C_3 \cdot X H_2 = (0)^{$									
617.	Choose the incorrect statement :									
	(a) Pure iron does not rust									
	(b) A miniature Galvanic cell is formed on the surface of metal.									
	(c) Pressure of CO_2 accelerates corrosion on the metallic surface (anode)									
	(d) Sacrificial metal should have high reduction potential value									
618.	At equilibrium point :									
	(a) The emf of the cell is zero ($E_{cell} = O$)									
	(b) $E_{cell} > 1$ (c) $E_{cell} = 1$ (d) $E_{cell} < 1$									
619.	Which of the following statements does not apply to hydrogen fuel cell:									
	 (a) Anode and cathode are of porous carbon. (b) Owngon and hydrogon are evolved during the redex respection taking place in the 									
	cell									
	(c) Conc. NaOH / KOH (aq) is taken in between the porous carbon.									
	(d) It can work continuously as long as O_2 and H_2 are supplied at the electrode cath-									
	ode and anode respectively.									
Unit	-1V									
620.	log k vs $\frac{1}{T}$ is a straightline plot with slope									
	(a) $-\frac{Ea}{2.303 R}$ (b) $\frac{Ea}{2.303 R}$ (c) $\ln A$ (d) $-\frac{2.303 R}{E_a}$									
621.	The correct form of Arrhenius equation:									
	(a) $k = A e^{-E_a} / RT$ (b) $k = A e^{+E_a/RT}$ (c) $\frac{N}{\eta} = e^{-E_a/RT}$ (d) $\frac{n}{N} = e^{E_a/RT}$									

Unit-	-VI									
622.	622. One of the metal in amalgam must be ———									
	(a) Zn (b) Hg	(c)	Cd	(d)	Au					
623.	The element present in stain less steel to the	owes	st percentage is	S	·					
	(a) Cr (b) Ni	(c)	Mo	(d)	C					
624.	The metal commonly used as reductant is me	tallur	gical operation	ns is _	·					
	(a) Al (b) Cr	(c)	Na	(d)	Li					
625.	Copper is extracted from –									
	(a) Cuprite (b) copper glance	(c)	copper pyrite	e (d)	malachite					
626.	Which of the following contains maximum %	ofco	opper ?							
	(a) anode sludge (b) copper matte	(c)	blister copper	r (d)	smelted pyrite					
627.	Copper has high reduction potential $\left(E^{0}_{Cu^{2+}}\right)$	$2u^{=+0}$	34V). So during	g eleo	ctrolytic refining					
	the electrolyte may contain									
	(a) Zn^{2+} (b) Fe^{3+}	(c)	Ni ²⁺	(d)	all of these ions					
628.	Which of the following refining process copp	er ob	tained much in	pure	form?					
	(a) By electrolytic mathod	(b)	poling metho	d						
	(c) hydrometallurgical process	(d)	none of these							
629.	In the electro refining of copper is a	used	as cathode.							
	(a) Bar of impure copper	(b)	pure copper							
	(c) platinum	(d)	graphite							
630.	Which of the following alloys does not contain	in Cu	?							
	(a) German silver	(b)	Manganim							
	(c) Gun metal	(d)	Solder							
631.	Which of the following oxide formation is m	ore f	avourable i.e. ł	navin	g more negative					
	ΔG^0 value.									
	(a) MgO (b) ZnO	(c)	CO	(d)	FeO					
632.	In the above which metal behaves as better re	educi	ng agent ?							
	(a) Mg (b) Zn	(c)	С	(d)	Fe					
633.	In the Ellingham the diagram graphs are obta	ined o	on plotting —							
	(a) ΔG^0 vs T (b) ΔH^0 vs T	(c)	$\Delta S^0 \ vs \ T$	(d)	ΔG^0 vs P					
634.	Which of the following one contains more that	an on	e metal?							
	(a) Limonite (b) Siderite	(c)	Haematite	(d)	Chalcopyrite					
635.	The most pure form of iron is									
	(a) pig iron (b) cast iron	(c)	wrought iron	(d)	Steel					
636.	During manufacture of steel (Bassemer proc alongwith iron.	ess) s	piegeleisen is a	addec	l which contains					
	(a) Mg (b) Mn	(c)	$P_2 O_5$	(d)	SiO ₂					
637.	The slag obtained during extraction of coppe	r pyri	te is the compo	ound	mainly of :					
	(a) Cu_2S (b) Fe SiO ₃	(c)	CaCi O ₃	(d)	Si O ₂					
638.	In the electro refining of copper, some gold is	obta	ined from		-					
	(a) anode mud (b) cathode mud	(c)	cathode	(d)	electrolyte					

639.	When compared the plots of ΔG^0 for formation of Al ₂ O ₃ , ΔG^0 for formation of Cr ₂ O ₃ former one is found to be:									
	(a) Same (b) unpredicted (c) lower (d) higher									
640.	The common method for extraction of metals from the oxide ore is :									
	(a) reduction with carbon (b) reduction with hydrogen									
	(c) reduction with aluminium (d) electrolytic method									
Unit	Unit - VIII									
641.	Lanthanoid mostly exhibit $+3$ O.S. while actinoids have wide range of O.S. ($+3$ to $+7$). This is due to									
	(a) only $n(s) \overline{e}(s)$ take part in bond formation.									
	(b) $(n-2)f \overline{e}$ not easily participate									
	(c) In actinoids 5f, 6d and 7s energy levels are comparable.									
	(d) In lanthanoids 4f, 5d and 6s level are of almost same energy									
642.	The magnetic moment of $[Mn(CN)_6]^4$ is BM.									
(12	(a) 1.73 (b) 2.83 (c) 3.87 (d) 5.92									
643.	(a) Strength of metallic bonding									
	(a) Strength of metallic bonding (b) Stronger inter atomic bonding due to $3d^5 4s^1$ configuration									
	(c) Hg has filled d-orbitals $(5d^{10} 6s^2)$									
	(d) all of these									
644.	Ce ⁴⁺ is used as in volumetric analysis									
	(a) reducing agent (b) oxidising agent									
	(c) Complexing agent (d) none of these									
645.	The common oxidation state of Lanthanides is									
616	(a) III (b) II (c) IV (d) V									
646.	Chemistry of Lanthanoids is identical, because									
	(a) these have general electronic confuguration (n-2) f^{1-14} (n-1) d^{0011} ns ²									
	(b) 4f $\overline{e}(s)$ are shielded by electrons present in the outershells									
	(c) $f \overline{e}(s)$ are not available for bond formation									
(17	(d) of the above reasons									
647.	Lanthanoid contraction is due to increase in (a) $abial dimension for the definition of the standard dimension of the st$									
	(a) shielding by $4re(s)$ (b) atomic number									
610	(c) effective nuclear charge (d) size of Δf orbital									
048.	when $SO_2(g)$ is passed through acidilled $K_2 Cr_2 O_7$ solution (a) the solution becomes blue (b) the solutions gets decolourised									
	(c) SO is reduced to sulfar (d) green chromium sulfate is formed									
649.	Cerium ($Z = 58$) is an important member of lanthanoids. Which of the following state-									
	ments about Ce is incorrect ?									
	(a) Ce(IV) is not known in solution (b) Ce (III) is more stable than Ce(IV)									
	(c) Ce(IV) in solution acts as oxidising agent									
	(d) common oxidation state of cerium is III and IV									

650.	4fa	nd 5f series of elements are c	alled						
	(a)	representative elements	(b)	normal elements					
	(c)	special transition elements	(d)	(d) Inner transition elements.					
651.	Whi	ich of the following is the corr	rect sequency of i	increasing orde	roft	heir ionic radii?			
	(a)	$Yb^{3+} < Pm^{3+} < Ce^{3+} < La^{3+}$	+ (b)	$Ce^{3+} < Yb^{3+}$	< Pr	$n^{3+} < La^{3+}$			
	(c)	$Yb^{3+} < Pm^{3+} < La^{3+} < Ce^{3}$	+ (d)	$Pm^{3+} < La^{3+}$	< C	$e^{3+} < Yb^{3+}$			
652.	In th with	ne voluemetric analysis potas n dil H_2SO_4 , because	sium permangan	ate is not acidi	fied v	with dil. HCl but			
	(a)	HCl is an acid as wall as a re	educing agent con	nsuming some	volur	me of MnO_4^- .			
	(b)	H_2SO_4 never reduces MnC	-4						
	(c)	H_2SO_4 is also an oxidising agent							
(52	(a)	Correct result is obtained w	ith dil HCl.	me divers in	la	un atuia au alvaia			
055.	(per	manganometry)	in	medium in	voit	imetric analysis			
	(a)	acidic (b) alkal	ine (c)	neutral	(d)	ammonical			
654.	Acti	inoid cations are coloured due	e to f - f transitior	n but which of t	he fo	llowing cation is			
	(a)	U^{3+} (b) Am^{3}	+ (c)	Np ³⁺	(d)	Ac ³⁺			
655.	Whi	ich of the following is incorrec	ct in respect of ac	tinoids?	()				
	(a)	Actinoids form oxocation (e	2 g. UO^{+}						
	(b)	these are radioactive	8 27						
	(c)	Most of these elements are c	alled transuraniu	im elements					
	(d)	These show oxidation states	s, II and III						
656.	Whi	ich of the following is the stro	ngest base ?						
	(a)	$La(OH)_3$ (b) $Yb(O)$	OH), (c)	Lu(OH) ₃	(d)	Ce(OH) ₃			
657.	Whi	ich of the following pairs has	identical size?	2		5			
	(a)	Zn^{2+}, Hf^{4+} (b) $Fe^{2+},$, Ni^{2+} (c)	Zr ²⁺ , Ti ⁴⁺	(d)	Zr^{4+}, Hf^{4+}			
Unit-	-IX								
658.	Whi	ich of the following does not s	how geometrical	l isomerism?					
	(a)	$\left[\mathrm{CrCl}_{2}\left(\mathrm{Ox}\right)_{2}\right]^{3+}$	(b)	$\left[\operatorname{Fe}(\operatorname{NH}_{3})_{2}\right]$	(CN)	$)_4]^-$			
	(c)	$\left[Pt(NH_3)Cl_2 \right]$	(d)	$\left[Pt(NH_3)_3 \right]$	C1] ⁺				
659.	Whi	ich of the following is not corr	rectly matched?						
	(a)	chlorophyll-Mg	(b)	haemoglobin	- Fe				
	(c)	Vitamin-12-Co	(d)	EDTA - Nipo	oison	ing			
660.	Dur	ing extraction of gold formati	on of co	omplex occurs.					
	(a)	Cyanido (b) Chlo	orido (c)	Pyridine	(d)	ammine			
661.	Cho	ose the incorrect statement -							
	(a)	Greater is the charge/radius	ratio greater the	stability.					
	(b)	Nickel is purified on convert	ting to carbonyl c	complex					
	(c)	A π -bonded complex is for	med when ligand	$115 C_2 H_4.$					
	(d)	Carbonyls are not organome	etallic compound	S.					

662.	52. Which of the following is an optically active isomer?									
	(a) trans. tetra ammine dichlorido Co(III) c	ation								
	(b) cis-Co(en) ₂ Cl ₂ (c) $[Cu(NH_3)_4]^{2+}$	(d)	Trans-Co $(en)_2 Cl_2$							
Unit-	X									
663.	Which of the following is optically active?									
	(a) $CH_3 - CH_2 OH$	(b)	CH ₂ OH CH(OH)–CH ₂ OH							
	(c) CH_3 -CH(OH) C_2H_5	(d)	$C Cl_2 F_2$							
664.	Lindane is also a name of									
	(a) BHC (b) Gammaxane	(c)	frecon (d) chlorobenzene							
665.	Choose incorrect statement in respect of free	on.								
	(a) These are chloro fluoro derivatives of n	nethar	ne and ethane							
	(b) Freon prepared from CCl_4 with SbF_3) Freon prepared from CCl_4 with Sb F_3								
	(c) Freons are responsible for destruction of	Freons are responsible for destruction of ozone layer (stratosphere)								
	(d) None of these									
666.	The IUPAC name of Westrosol is	<u>.</u> -								
	(a) 1, 1, 2 trichloro ethane	(b)	1, 1, 2, 2 tetrachloroethane							
	(c) 1, 1 dichloro ethene	(d)	1, 1, 2 trichloro ethane							
667.	Which of the following is not chosen as clean	sing a	agent?							
	(a) CCl ₄ (b) Westrosol	(c)	detergent (d) chloroform							
668.	The compound used as refrigerant is									
	(a) NH_4Cl (b) CCl_4	(c)	CF_4 (d) CF_2Cl_2							
669.	Which of the following is non-polar?									
	(a) $CH_3 Cl$ (b) $CH_2 Cl_2$	(c)	$CHCl_3$ (d) CCl_4							
Unit-	-XIII									
670.	$C_6H_5NH_2 + NaNO_2 + 2HCI \longrightarrow C$	H.N.	,Cl+NaCl+2H,O. This reaction is							
	called .	0 5 2								
	(a) Nitration	(b)	diazotisation							
	(c) diazonium salt formation	(d)	none of these							
671.	The conversion of aniline to benzene is called	de-am	nination. This is carried out in treating							
	benzene diazonium chloride with -		-							
	(a) $H_{3}PO_{2}$ (aq.)	(b)	ethanol							
	(c) oxidising agent	(d)	(a) or (b)							
672.	$C_6H_5 - NH_2 \xrightarrow{NaNO_2} A \xrightarrow{CuCN} B$, The	com	pound 'B' is							
	(a) Benzonitrile (b) Benzoic acid	(c)	Benzamide (d) BDC							
673.	Benzene diazonium chloride reacts with phen	olto	form :							
	(a) p-chlorophenol	(b)	chlorobenzene							
	(c) p-hydroxyazo benzene	(d)	DDT							
674.	Iodobenzene can be prepared by ——									
	(a) treating chlorobenzene with I_2 using Fe	Cl ₃ cat	talyst							
	(b) treating phenol with HI									
	(c) treating BDC (benzenediazonium chlori	de) w	vith KI							
	(d) Chlorobenzene with SbI_3									

675.	Benzene diazonium chloride reacts with warr	n wat	er to give			
	(a) chloro benzene	(b)	aniline			
	(c) phenol	(d)	(d) none of these			
676.	Diazonium salts are products of the reaction	ofnit	rous acid with			
	(a) primary aliphatic ammine	(b)	primary aromatic amine			
	(c) cyclohexanamine	(d)	(d) Secondary aromatic amine			
677.	Which of the following reagents is used to p aniline?	repar	e benzene diaz	oniu	m chloride form	
	(a) $NaNO_2(S) + dil HCl$	(b)	$LiAlH_4$			
	(c) $NH_2NH_2 + KOH$	(d)	NaCl + HNC),		
678.	$C_6H_5N_2Cl \xrightarrow{HBF_4} A \xrightarrow{NaNO_2} B.$ The con-	mpou	ind 'B' is		·	
	(a) fluoroborate	(b)	nitrobenzene			
	(c) aniline	(d)	chlorobenzen	e		
679.	Choose incorrect statement -					
	(a) BDC is prepared from aniline by diazoti	isatio	n			
	(b) Aromatic diazonium salt is more stable t	than t	hose of aliphati	c pri	mary amine	
	(c) -NH group is aniline is protected on ac	etvlat	tion	• P**		
	(d) Banzamida is meta directing in forming	maio	r product			
690	(d) Delizamide is meta-directing in forming	inajoi	i piouuci.			
680.	which of the following reagents is used to dis	tingu	ish between			
	$H_3C \longrightarrow NH_2$ and $O \longrightarrow CH_2$	NH ₂				
	(a) dil HCl	(b)	$C_6H_5SO_2Cl(a$	lkali	ne)	
	(c) $(NaNO_2 + HCl) + \beta$ -naphthol	(d)	$Ag NO_3$ (aq.))		
UNI	T - XIV					
681.	Which of the following is a keto sugar.					
	(a) Ribose (b) glycose	(c)	Erythrulose	(d)	erythrose	
682.	The carbohydrates which on hydrolysis give t	two to	o ten same or di	iffere	ent monosaccha-	
	rides are called					
	(a) oligosaccharide (b) polysaccharide	(c)	aldose	(d)	ketrse	
683.	Which of the following a non-sugar?					
	(a) monosaccharides	(b)	oligoaccharid	es		
	(c) starch	(d)	Ketosugars			
684.	Which of the following is not a reducing suga	ır?				
	(a) sucrose (b) glucose	(c)	fructose	(d)	Lactose	
685.	Aminoacids supplied in the diet are called ess	sentia	l amino acids.			
	Choose such acid from the following. That is		······································			
	(a) Valine (b) Leucine	(c)	isoleucine	(d)	all of these	
686.	Choose the incorrect statement :					
	(a) Enzymes are globular proteins					
	(b) Proteins are amphoteric in nature					
	(c) Maltase, the enzyme required to conver	t mali	tose to glucose			
(n -	(d) Enzymes end with suffic-ose.					
687.	Which of the following is not a fat-soluble vita	amin.				
	(a) A (b) B	(c)	D	(d)	K	
688.	Which of the following bases is not present in	n RN/	A ?			
	(a) adenine(A) (b) guanine(G)	(c)	thyamine(T)	(d)	uracil(U)	

689.	9. Ascorbic acid is the name of	
	(a) a vitamin (b) an enzyme (c) an amino acid (d) a l	hormone
690.	0. Which hormone contains iodine?	
	(a) Thyroxine (b) Insulin (c) Adrenaline (d) Te	estosterone
691.	1. Vitamin A is called	
	(a) Ascorbic acid (b) Retinol (c) Calciferol (d) Te	ocapherol
692.	2. The helical structure of protein is stabilised by –	
	(a) H-bond (b) peptide bond (c) vander Waals force(d	d)
	None of these	
693.	3. Proteins are polymers of amino acids. Which of the following is not a prot	tein.
	(a) Wool (b) nails (c) hair (d) D	NA
694.	4. A mixture of amylase and amylopectin is called	
	(a) Starch (b) Cellulose (c) lactose (d) su	ucrose
695.	5. Choose the incorrect statement.	
	(a) The monomer of nucleic acid is neucleotide	
	(b) Nucleotide is made up of phosphoric acid unit and nucleoside.	
	(c) Nucleoside consists of pentose sugar and a base derived from	n purine and
	pyrimidine	
	(d) Cytosine (c) base is derived from purine.	
696.	5. Which of the following is not properly matched?	
	(a) Vit. A – Carotene derivative (b) Vit. B_1 – Beriberi	
	(c) Vit-B ₁₂ -anaemia (d) Vit.K-muscular weak	kness
697.	7. Glucose in blood can be determined with-	
	(a) Tollen's reagent (b) Benedict's solution	
	(c) Alkaline iodine solution (d) Bromine water	
698.	8. An example of aminoacid containing benzene ring is	
	(a) serine (b) lysine (c) tyrosine (d) al	lamine
699.	9. Plant hormones are called	
	(a) phytohormones (b) endocrine hormone	
	(c) exocrine hormones (d) cortisone	
XVI	Ί	
700.). Which of the following is not a preservative ?	
	(a) Salt (b) sugarsyrup (c) sodiummeta bisulfite	(d) milk
701.	1. Which of the following is a powerful artificial sweetening agent?	
	(a) Saccharin (b) Cyclamate (c) Sucralose (d) al	litame
702.	2. Antioxidants on adding to processed food prevent oxidation of fats and	d subsequent
	spoilage. Which of the following is not an antioxidant?	· 1 (DUA)
	(a) Butylated hydroxy toluene (BHT) (b) Butylated hydroxy an	usole (BHA)
	(c) Butylated Acetophenone (BAP) (d) Gallic acid	
703.	3. Sodium salt of is not used as food preservative ?	
	(a) benzoic acid (b) sorbic acid	
	(c) propanoic acid (d) Gluconic acid	
704.	4. Which of the following vitamin acts as antioxidant	
	(a) B-complex (b) E (c) D (d) no	one of these

	SELFASSIGNMENT								
Blacken the appropriate circle with blue pen : Time - 15 mins.									
1.	Quartz is type of solid.								
	(a) Amorphous O	(b) covalent O							
	(c) Molecular O	(d) ionic O							
2.	In NaCl structure, CF ions occupy–								
	(a) corners of the Cube O	(b) edge centre of the cube O							
	(c) on the centre of the faces O	(d) both (b) and (c) O							
3.	Emf of a cell in terms of reduction potential of	fits left and right hand electrode is ——.							
	(a) $E = E_{left} - E_{right}$ O	(b) $E = E_{left} + E_{right}$ O							
	(c) $E = E_{right} - E_{left}$ O	(d) $E = -(E_{right} + E_{left}) O$							
4.	What is the number of coulombs required for	conversion of one mole of MnO_4^- to one							
	mole of Mn^{2+} ?								
	(a) 1 F O (b) 3 F O	(c) 5 F O (d) 7 F O							
5.	The proces of getting fresh water from sea wa	ater in known as							
	(a) osmosis O	(b) fitration O							
	(c) reverse osmosis O	(d) Sedimentation O							
6.	Of the following 0.1 gram mole of aqueous	solution, which will exhibit the largest							
	depression in freezing point?								
7	(a) KCI O (b) $C_6H_{12}O_6$ O	(c) $\operatorname{Al}_2(\operatorname{SO}_4)_3 \cup (\operatorname{d}) \operatorname{K}_2\operatorname{SO}_4 \cup$							
/.	what nows in internal & external circuit of a $\begin{pmatrix} a \\ b \end{pmatrix}$	(h) algotrank ank							
	(a) ions, electrons O	(b) electronly only O							
0	(c) electrons, ions O The standard amf of call involving and electron	(d) IONS ONLY \bigcirc							
8.	I he standard emi of cell involving one electron	1 charge is found to be 0.391 at 25°C. The							
	equilibrium constant of the feaction is $(a) = 1.0 \times 10^{1}$ (b) $(a) = 1.0 \times 10^{5}$ (c)	(2) 1 0 10 ¹⁰ 0 (d) 1 0 10 ³⁰ 0							
9	(a) 1.0×10 (b) $1.0 \times 10^{\circ}$ (c) The molal elevation constant of water is	If 0 1m aqueous solution of a nonvolatile							
).	non-electrolyte substance boils at $100.052^{\circ}C$	II o. Illaqueous solution of a nonvolatile,							
	(a) 0.52° C/molal O	(b) 5.2° C/molal O							
	(c) 0.052 °C/molal O	(d) None of these O							
10	What will be the pH of aqueous 0.1 M solution	of sodium chloride in an electrolytic cell							
10.	during electrolysis between graphite electrode	?							
	(a) $pH = 01 O$ (b) $pH > 7 O$	(c) $pH < 7$ O (d) $pH = 7$ O							
11.	A negatively charged suspension of clav in wat	er will need to coagulate with minimum of							
	(a) Aluminium chloride O	(b) potassium sulfate O							
	(c) sodium hydroxide O	(d) hydrochloride acid O							
12.	Rate of physiosorption increases with —								
	(a) decrease in temperature	(c) increase in temperature							
	(c) decreases in surface area	(d) decrease in pressure							
13.	At high concentration of soap in water, soap	behaves as							
	(a) molecular colloid	(b) associated colloid							
	(c) macromolecular colloids	(d) lyophilic colloid							
14.	Which of the following is not a colloid?								
	(a) Chlorophyll O (b) smoke O	(c) milk O (d) fog O							
15.	Which of the following factor(s) affect the rat	e of chemical reaction?							
	(a) The nature of the reactant O	(b) The concentration of the reactant O							
	(c) Temperature O	(d) all of these O							
	\sim								

Chemistry - A1											
Answers											
1.	b	2.	c	3.	c	4.	c	5.	a	6.	b
7.	a	8.	b	9.	a	10.	a	11.	c	12.	c
13.	a	14.	b	15.	a	16.	d	17.	c	18.	b
19.	a	20.	c	21.	a	22.	c	23.	a	24.	c
25.	b	26.	d	27.	d	28.	d	29.	b	30.	a
31.	a	32.	c	33.	d	34.	b	35.	a	36.	b
37.	c	38.	b	39.	b	40.	c	41.	d	42.	c
43.	d	44.	c	45.	b	46.	c	47.	d	48.	d
49.	c	50.	b	51.	d	52.	d	53.	c	54.	c
55.	b	56.	c	57.	c	58.	а	59.	c	60.	a
61.	a	62.	c	63.	d	64.	b	65.	b	66.	a
67.	b	68.	a	69.	a	70.	b	71.	c	72.	a
73.	a	74.	а	75.	a	76.	b	77.	d	78.	b
79.	c	80.	d	81.	b	82.	а	83.	а	84.	c
85.	a	86.	c	87.	a	88.	d	89.	c	90.	d
91.	a	92.	d	93.	d	94.	d	95.	c	96.	d
97.	c	98.	c	99.	b	100.	d	101.	c	102.	d
103.	b	104.	b	105.	b	106.	b	107.	c	108.	a
109.	a	110.	d	111.	b	112.	a	113.	c	114.	d
115.	b	116.	d	117.	c	118.	c	119.	c	120.	b
121.	d	122.	a	123.	d	124.	c	125.	c	126.	a
127.	a	128.	b	129.	b	130.	a	131.	d	132.	b
133.	a	134.	a	135.	a	136.	c	137.	a	138.	d
139.	d	140.	c	141.	b	142.	a	143.	b	144.	d
145.	c	146.	a	147.	c	148.	c	149.	d	150.	c
151.	b	152.	c	153.	a	154.	b	155.	d	156.	a
157.	b	158.	b	159.	d	160.	b	161.	b	162.	d
163.	d	164.	d	165.	c	166.	c	167.	а	168.	a
169.	c	170.	c	171.	b	172.	c	173.	d	174.	a
175.	a	176.	d	177.	a	178.	d	179.	а	180.	c
181.	d	182.	b	183.	c	184.	a	185.	a	186.	d
187.	b	188.	c	189.	b	190.	b	191.	a	192.	d
193.	c	194.	b	195.	b	196.	b	197.	a	198.	b

199.	c	200. a	201. c	202. d	203. a	204. c
205.	d	206. d	207. a	208. a	209. d	210. c
211.	с	212. d	213. b	214. a	215. a	216. a
217.	с	218. b	219. d	220. a	221. c	222. a
223.	а	224. b	225. d	226. a	227. d	228. d
229.	b	230. c	231. a	232. a	233. b	234. c
235.	d	236. a	237. b	238. d	239. c	240. d
241.	с	242. b	243. a	244. b	245. a	246. a
247.	b	248. a	249. d	250. c	251. d	252. d
253.	b	254. b	255. c	256. d	257. a	258. d
259.	d	260. d	261. b	262. d	263. a	264. b
265.	d	266. a	267. d	268. c	269. c	270. d
271.	а	272. d	273. b	274. a	275. d	276. b
277.	c	278. d	279. d	280. a	281. d	282. b
283.	b	284. c	285. a	286. c	287. a	288. a
289.	а	290. a	291. b	292. c	293. a	294. d
295.	c	296. b	297. b	298. c	299. a	300. c
301.	c	302. b	303. d	304. b	305. b	306. b
307.	а	308. c	309. b	310. c	311. c	312. c
313.	c	314. d	315. b	316. c	317. b	318. a
319.	а	320. b	321. b	322. b	323. a	324. a
325.	c	326. b	327. a	328. d	329. c	330. a
331.	b	332. b	333. b	334. b	335. a	336. c
337.	b	338. a	339. d	340. c	341. b	342. b
343.	а	344. d	345. b	346. c	347. b	348. c
349.	а	350. a	351. a	352. c	353. a	354. a
355.	d	356. c	357. b	358. d	359. d	360. d
361.	с	362. b	363. b	364. c	365. b	366. d
367.	с	368. a	369. b	370. b	371. d	372. a
373.	b	374. c	375. a	376. b	377. d	378. a
379.	b	380. a	381. a	382. a	383. b	384. b

385.	b	386. a	387. b	388. d	389. c	390. b
391.	а	392. d	393. d	394. d	395. b	396. b
397.	b	398. c	399. a	400. b	401. b	402. a
403.	с	404. a	405. d	406. b	407. c	408. c
409.	а	410. c	411. b	412. c	413. b	414. a
415.	а	416. c	417. c	418. b	419. d	420. b
421.	с	422. b	423. d	424. a	425. b	426. d
427.	c	428. a	429. c	430. b	431. a	432. a
433.	b	434. b	435. c	436. c	437. c	438. c
439.	а	440. c	441. d	442. a	443. a	444. b
445.	а	446. a	447. a	448. b	449. c	450. b
451.	b	452. a	453. a	454. d	455. a	456. c
457.	d	458. a	459. b	460. c	461. b	462. b
463.	а	464. a	465. d	466. a	467. d	468. d
469.	d	470. b	471. c	472. a	473. c	474. c
475.	a	476. a	477. b	478. a	479. d	480. b
481.	c	482. c	483. c	484. d	485. a	486. d
487.	c	488. b	489. d	490. a	491. c	492. b
493.	а	494. a	495. a	496. b	497. b	498. d
499.	d	500. a	501. a	502. d	503. b	504. a
505.	c	506. c	507. d	508. c	509. b	510. a
511.	а	512. b	513. c	514. b	515. c	516. b
517.	a	518. b	519. d	520. a	521. c	522. a
523.	b	524. a	525. b	526. a	527. b	528. a
529.	a	530. b	531. b	532. d	533. c	534. a
535.	d	536. a	537. c	538. a	539. c	540. a
541.	а	542. a	543. d	544. c	545. c	546. a
547.	b	548. b	549. b	550. b	551. d	552. d
553.	а	554. d	555. b	556. d	557. d	558. d
559.	а	560. d	561. b	562. a	563. b	564. a
565.	d	566. c	567. b	568. c	569. a	570. b
571.	а	572. a	573. c	574. d	575. d	576. a
577.	b	578. a	579. a	580. d	581. d	582. b
583.	а	584. b	585. d	586. a		

Answers to the additional questions as per original syllabus											
587	с	588	d	589	d	590	d	591	а	592	b
593	d	594	с	595	a	596	d	597	b	598	c
599	d	600	a	601	a	602	d	603	с	604	d
605	b	606	d	607	d	608	b	609	с	610	d
611	а	612	a	613	b	614	b	615	d	616	b
617	d	618	a	619	b	620	a	621	a	622	b
623	d	624	a	625	c	626	с	627	d	628	a
629	b	630	d	631	a	632	a	633	a	634	d
635	c	636	b	637	b	638	a	639	d	640	a
641	c	642	a	643	d	644	b	645	a	646	d
647	c	648	d	649	a	650	d	651	a	652	a
653	a	654	d	655	d	656	а	657	d	658	d
659	d	660	a	661	d	662	b	663	с	664	b
665	d	666	a	667	d	668	d	669	d	670	b
671	d	672	a	673	c	674	c	675	c	676	b
677	а	678	b	679	d	680	c	681	c	682	a
683	c	684	a	685	d	686	d	687	b	688	c
689	а	690	a	691	b	692	а	693	d	694	a
695	d	696	d	697	b	698	c	699	a	700	d
701	d	702	c	703	d	704	b				
					* * •	*					

	Group - A(2)					
	Very Short Answer type questions.					
Fill i	n the blanks :					
Unit	- I					
1.	In ZnS crystal, Zn ²⁺ ions occupy———.					
2.	Na ₂ O crystal shows ———— structure.					
3.	Rock salt type structure has ——— coordination.					
4.	In most cubic close-packed lattices, ———% of space is filled.					
5.	Two types of voids are ———— and ———.					
6.	The point defect in a crystal that does not change the density of a solid is ———.					
7.	Graphite is bonded type of solid.					
8.	In NaCl crystal, ——— ions occupy all the octahedral sites.					
9.	Co-ordination numbers of Cs^+ and Cl^- in CsCl crystal are in the ratio — — .					
10.	In NaCl crystal, Na ⁺ ion is surrounded by $$ Cl ⁻ ions.					
11.	The number of nearest neighbours with which a given sphere is in contact is called ——					
12.	Face-centred cubic unit cell has — atoms.					
13.	Glass is an example of solid.					
14.	Caesium chloride has ———— structure.					
15.	The co-ordination number of octahedral void is					
16.	F-centres are formed in $Na^+ Cl^{-1}$ due to migration of ion towards the surface.					
17.	An atom in hexagonal close packing (hcp) structure has octahedral and tetrahedral void.					
18.	Ionic solids never conduct electricity in state due to imobility of					
19.	If 'r' is the radius, the edge length of face centred unit cell is					
20.	In fcc lattice, a unit cell is shared equally by number of unit cells.					
21.	In CsCl lattice each Cs^+ is surrouneded by member of Cl^- ions.					
22.	In CaF ₂ , the C.N _s of Ca ²⁺ and F ⁻ ions are and respectively.					
23.	CsCl has bcc lattice. On heating at about 760 K it transforms into					
24.	Empty space in bcc lattice is%.					
25.	In cubic arrangement of 'N' spheres, the number of tetrahedral and number of octahedral voids are respectively					
26.	Number of unit cells in 168.5 gram of CsCl crystal is nearly (Mol. mass of CsCl = 168.5 g/mole)					
27.	Number of unit cells in 1 mole of NaCl crystal is nearly					
28.	Co-ordination number of ZnS crystal is					
29.	In a crystal arrangement 'X' atoms are placed at corners and 'Y' atoms at body centres. Then the formula of the compound is					

30.	In a crystal arrangement, 'X' atoms are placed at corners and body centres. 'Y' atoms are placed at edge centres. The formula of the compound is
31.	The compound possessing both Schottky and Frenkel defect is
32.	Number of Na^+ occupy as 2nd nearest neighbour to the locations of Na^+ in the structure of NaCl is
33.	In hcp, ABAB type of arrangement takes place. So in bcc the arrangement is While in ccp it is
Unit	- II
34.	With the increase of temperature, the vapour pressure of a liquid ———.
35.	With increase of altitude, the boiling point of water — .
36.	Solutions having same osmotic pressure are called ———.
37.	On adding a solute, boiling point of solution ———.
38.	For ideal solution $\Delta H_{mix} = 0$, but ΔS_{mix} is
39.	Density of 2.05 M solution of acetic acid in water is 1.02 g.ml. The molality of the solution is
40.	Phenol dimerises in benzene having van't Hoff factor 0.54. The degree of association is
41.	The molal elevation constant of water 0.51 the boiling point 0.1 m aqueous NaCl solution is
42.	Between sodium chloride and magnesium chloride has lower vapour pressure.
43.	Camphor is often used in determination of molecular mass because it hass bery high value.
44.	20 gram of non-volatile solute is added to 500 gram solvent. Freezing point of solvent = 5.48° C and that of solution = 0.75° C. K _f = 11.9 molecular mass of the solute is
45.	When an egg is placed in concentrated solution of sodium chloride, it shrinks due to
46.	The molarity of pure water is
47.	5.85 g of NaCl is dissolved in 90 g of water. The mole fraction of the solute is
48.	For urea solution (1 M), the value of van't factor (<i>i</i>) is
49.	Alloys are type of homogeneous solution.
50.	The unit of cryoscopic constant is
51.	The depression in f. p. is directly proportional to
52.	The property of solution which depends on quantity of solute particles is called
53.	Higher is $K_{\rm H}$ value is the solubility at a given temperature.
54.	The value of ΔH_{mixing} is for a liquid - liquid solution of benzene and toluene.
55.	A–B interaction is greater than A–A and B–B interaction. The process of solution of, A in B is solution with deviation.

l

56.	Nomality of 0.3 M phosphoric acid is N.
57.	Normality \times equivalent is
58.	A 5% solution of cane sugar (molar mass = 342 g/mol) is isotonic with 1% of a substance X. Mol mass of X is
59.	If ' α ' is the degree of dissociation of Na ₂ SO ₄ , the van't Hoff factor (i) will be
60.	Hydrostatic pressure set up due to osmosis is called
61.	Pressure required to prevent osmosis and the process is
62.	Benzoic acid present as is non-polar solvent.
Unit	- III
63.	EMF of the cell when the cell reaction attains equilibrium is Where ΔG is also equal to
64.	pH value of aqueous solution of NaCl after electrolysis is
65.	For strong electrolytes degree of ionisation is
66.	On electrolysis of dilute sulphuric acid using Pt-electrode the product obtained at anode is
67.	The salt, that liberates hydrogen (g) at cathode and anode are and respectively.
68.	Graphite is a conductor but another crystalline allotrope is insulator.
69.	The most durable metal plating on iron to protect against corrosion is generally
70.	If 0.5 amp. current is passed through acidified AgNO ₃ (Aq) for 100 minutes the mass of silver deposited on cathode is
71.	Equivalent conductance of NaCl, HCl and CH ₃ COONa at infinite dilution are 126.45, 126.16 and 91 ohm ⁻¹ cm ² respectively. Λ^0 CH ₃ COOH would be
72.	Between Al and Zn is a better reducing agent.
73.	A piece of copper wire is immersed in a solution of $AgNO_3(Aq)$. The colour of the solution turns
74.	amp. / sec is necessary to produce $O_2(g)$ at 1 ml / sec.
75.	The resistance of N_{10} solution is found to be 2.5×10^3 ohms. The equivalent
70	conductance of the solution kept in a cell with cell constant 1.25 cm ⁻¹ is
/6.	are responsible for electrolytic conduction.
//.	are responsible for metallic conduction.
/ð.	A mount of substance liberated by the seasons of one account of substance liberated b
/9.	electrolyte is called
80.	At electrode in a cell, oxidation takes place & at reduction takes place.
81.	In electrochemical cell energy is converted to energy.
82.	EMF of a standard hydrogen electrode is

83.	In a Galvanic cell the difference of reduction potential of cathode and anode is called
84.	Electrochemical equivalent of two metals are in the ratio of their
85.	E.C.E \times = chemical equivalent.
86.	The unit of molar conductance is
87.	The unit of specific conductance is
88.	Cell constant \times = specific conductance.
89.	In Daniell cell copper vessel serves as
90.	Resistance implied by one cm ³ of a substance is called and reciprocal of this is called
91.	Charge on one mole of carbonate ion is
92.	Electrovalent compounds are regarded as in respect of conductance of electricity.
93.	Electroplated silver spoon acts as in a cell during formation.
94.	Standard cell potential of Daniell cell is
95.	In an electrolytic cell one litre of 1M aqueous soluiton of MnO_4^- is reduced to 0.1 M
	MnO_4^{2-} on passage quantity of electricity.
96.	48250 C of electricity was required to deposit all the copper present in 0.5 L of CuSO ₄ solution using inert electrodes. Assuming no change in volume the molarity of the solution is
	$\begin{bmatrix} 2 \text{ F need to convert } Cu^{2+} \rightarrow Cu \end{bmatrix}$
Uni	t - IV
97.	For a first order reaction, the $t_{0.5}$ is equal to
98.	Photochemical reaction between hydrogen and chlorine is ———————————————————————————————————
99.	Arrhenius equation is given by
100.	Unit of rate constant for first order reaction is
101.	Alkali hydrolysis of ester is a order reaction having molecularity
102.	Molecularity cannot be greater than
103.	The 1st order reaction having molecularity greater than one is called ———.
104.	The unit of the rate constant for the second order reaction is
105.	The specific rate of a first order reaction depends on
106.	For an endothermic reaction where ΔH represents enthalpy of reaction is kJ/mol, the minimum value fo energy of activation (Ea) will be
107.	The hydrolysis of ethyl acetate in acidic medium is order reaction.
108.	A graph is plotted between ln k and $\frac{1}{T}$ for a first order reaction. The slope of the plot
	expressed as
109.	Ionic reactions are in nature in respect of their kinetics.
------	--
110.	$t_{\frac{1}{2}}$ for zero order reaction is proportional to
111.	The value of order of reaction maximises to
112.	If 'a' is the initial concentration of a substance according to zero order kinetic and rate constant is k. The time for the reaction to go completion is
113.	The rate for the single step reaction, $2A + B \rightarrow 2C$ is given as rate =
114.	The rate law of the reaction, $2A + B \longrightarrow 2C$ is represented as, rate = k[A] ² [B]. If 'A' is taken large in excess, the order of the reaction is
115.	Rate expression of a chemical change is $\frac{dx}{dt} = k[A]^2[B][C]^0$, the order of the reaction is
116.	The difference of threshold energy (E_{th}) and average energy of reactants, (E_R) is
117.	The half life period of a reaction is 100 minutes. In 400 minutes the initial concentration of 2-gram will become
118.	Rate is proportional to the square of the concentration. So the order of the reaction is
119.	 Unit of rate of reaction is
120.	It $t_{0.5} \propto \frac{1}{a^2}$ (a = initial concentration), then the order of reaction is
121.	The reaction, $2NO_2 \xrightarrow{Pt} 2N_2 + O_2$ is of order.
122.	Decomposition of H_2O_2 is order reaction.
123.	For a given reaction, $k = mol/\ell/sec$ the order of reaction is
124.	Order and molecularity of of hydrolysis of ester is & respectively?
125.	The slope of concentration of reactant vs time graph gives
126.	The number of species taking part is a single step of reaction is called of the reaction.
127.	Molecularity cann't be greater than
128.	If rate vs molar concentration of the reaction is linear passing through origin, it is order reaction.
129.	Temperature co-efficient of a reaction is
130.	If the energy released by the activated complex in forming the products is more than the activation energy absorbed by the reactants the reaction is in nature.
131.	The catalyst used in the decomposition KClO ₃ forming oxygen is
132.	The positive catalyst the activation energy.

133. The reaction rate is found to depend upon two concentration terms. The order of reaction is
134. Decomposition of ammonia on tungsten surface is a reaction of order.
135. For the reaction N ₂ + 3H ₂ \longrightarrow 2NH ₃ , if $\frac{d(NH_3)}{dt} = 2 \times 10^{-4} \text{ mol } L^{-1} \text{ S}^{-1}$ the value of
$-\frac{d[N_2]}{dt} \text{ is } \underline{\qquad} .$
Unit - V
136. Ferric hydroxide sol has ———— charge.
137. The zig-zag motion of colloidal particles is called ———.
138. The scattering of light on the surface of colloidal particle is ———.
139. The colloidal system of liquid dispersed solid is called ———.
140. Milk is an example of — type emulsion.
141. In arsenic sulfide colloide the particles are charged.
142. The conversion of precipitate to colloidal solution is called
143. The process of settling of colloidal solution is called
144. Sky looks blue due to
145. The migration of positively charged colloidal particles under the influence electric field towards cathode is called
146. A colloidal system where solid particles are dispersed in gas is called
147. Colloidal solution is homogeneous like sugar solution. T/F.
148. The extent coagulation by different substance can be known from its value.
149. Liquid-Liquid colloidal system is termed as
150. Bodylotion is type of emulsion.
151. A colloidal solution consists of two phases namely&
152. The term used where both absorption and adsorption take place is
153. Extent of physical adsorption increases with of temperature.
154. Reverse of adsorption is called
155. Absorption is a phenomenon while adsorption is
156. S_8 is an example of colloid.
157. (a) $NH_3(g)$ is by water.
(b) Silica gel water vapour.
158. Lyophilic colloids are stable than Lyophobic colloids.
159. Coconut charcoal is used to separate noble gases except(g).
160. Activated harcoal in a powerful adsorbent as it contains microscopic crystalline variety of with large surface area.
161. The entropy value (ΔS) during adsorption.

162.	ΔH value in the process of adsorption is
163.	Between NH_3 and N_2 is a good adsorbate.
164.	Absorption proceeds at uniform rate. T/F
165.	The decomposition of H_2O_2 is retarded in the presence of
166.	Oxidation of chloroform to phosgene is retarded by
167.	Efficiency of catalyst can be increased by certain substance called
168.	In Haber's process catalytic activity of iron is enhanced by
169.	In the stomach the enzyme converts protein to α -amino acid.
170.	The enzyme activity is increased by certain substance called
171.	Enzyme amylase becomes more active in presence of
172.	At CMC the negatively charged $-COO^{-}$ (head) remain of the sphere.
173.	The non-polar alkyl part (tail) of the soap is while the polar (-COO ⁻) part is in nature.
174.	Pore size of the filter paper is than the size of the colloidal particle.
175.	Haemoglobin in Blood is an example of colloid. (The anticoagulate heparin is -vely charged.)
176.	An emulsion of oil and water can be stabilised by certain substances called
177.	The stabilsing power of Lyophilic sol is expressed in terms of
178.	The cleansing action of soap is linked with its tendency to act as between oil & water.
179.	Associated colloids are called
180.	$2SO_2(g) + O_2(g) \xrightarrow{NO(g)}$. Here $NO_{(g)}$ acts as catalyst.
Unit	- VI
181.	Soluble metal oxide provide ions in aqueous medium the solution is called
182.	Non-metallic oxide in aqueous solution gives ion.
183.	Sodium oxide is a basic oxide but zinc oxide is
184.	The most electronegative non-metal is
185.	Dolomite is an ore of and
186.	The sulphide ore of Cu is known as
187.	Calamine is an ore of
188.	ZnS and PbS can be separated during froth flotation process using as depressant.
189.	Wolfram from SnO_2 is separated by
190.	NaOH acts as agent during concentration of bauxite.
191.	Silver glance is leached by
192.	Impurities + flux is called
193.	Acidic impurity such as sand (SiO_2) is removed on treating with

194.	The acidic impurity, P_2O_5 is removed by forming the fusible slag
195.	The gas liberated on roasting of zinc blende is
196.	Roasting is carried on in furnace.
197.	The process of heating the concentrated ore in absence of air at a temperature below its m.p is called
198.	The process of reduction during metallurgy is called
199.	Chalocopyrites contain metals, and
200.	In the blast furnase reduces $Fe_2 O_3$ to Fe.
201.	Blast furrace is charged with roasted ore along with and
202.	The tapped out iron from the furnace is called
203.	During electrolytic refining, the impure copper is choosen as in the cell.
204.	Copper obtained by electrolytic refining% pure.
205.	Calcination helps to remove&
206.	During the refining Zr is formed which on thermal decomposition gives pure metal.
207.	The impurity in a mineral is called
208.	Froth floatation process is used for the metallurgy of ore.
209.	A non-metal which shines like a metal and conducts electricity is
210.	The art of extracting metals from their ores is called
211.	Th process of removal of gangue or matrix from are is called
212.	Coke used during smelting of iron acts as fuel as well as agent.
213.	Reduction of metal oxide by aluminium metals is called
214.	The most abundant metal in the earth-crust is
215.	In the electrorefining of copper, some gold is obtained in
216.	Zinc blende and iron pyrites` are sulfides. T/F
217.	Density of slag is always than that of molten metal.
218.	The metal purified by distillation is
Unit	- VII
219.	'S' in H_2SO_4 undergoes hybridization.
220.	Among hydrides of group 15 has the lowest boiling point.
221.	Among halogens has only one oxidation state.
222.	Bromine gas turns starch-iodide paper due to liberation
223.	The halogen that most readily reduced
224.	XeF_2 is AB_2L_3 type, so its shape is
225.	The gas used in inflating aeroplane tyres is
226.	Sea divers use a mixture He and O_2 for artificial respiration. On coming to the surface they feel painful sensation called

227. The basicity of H_3PO_3 is while H_3PO_4 is tribasic.
228. XeF_6 on partial hydrolysis produces
(on hydrolysis o.s. does not change)
229. The basic stength of hydrides of group-15 decreases in the order
230. The equivalent mass of H_3PO_4 in the reaction:
$NaOH + H_3PO_4 \longrightarrow NaH_2PO_4 + H_2O$ is
231. When chlorine reacs with cold and dil solution of NaOH, it forms
232. SO_2 reacts with Cl_2 in presence of sunlight produces
233. Oxygen and Ozone are of each other.
234. Among hhalogens has the lowest bond dissociation enthalpy.
235. On thermal decomposition of ammonium dichromate or Bariumazide gas is liberated.
236. With alkali metal NH_3 liberates gas.
237. Ammonia gives brown precipitate with Nessler's reagent due to formation of
238. In the aquaregia conc Nitric acid and conc. Hydrochloric acid present in the ratio
239. The outer valence shell configuration of group 15 is
240. The neutral oxide of nitrogen is
241. Conc. HNO_3 oxidises 'P' to
242. Shape of NH ₃ is while shape of $\stackrel{\oplus}{NH_4}$ is
243. Anhydride of HNO, is
244. In fuming sulfuric and the fumes are nothing but
245. The O–O bond lengths is Ozone are identical. So Ozone exhibit in form.
246. Sulfur molecule is reresented as
247. Bleaching action of SO_2 due to
248. O ₃ reacts with KI solution to produce
249. SO_2 reacts with H_2S where it reacts as agent.
Unit - VIII
250. d- block elements are called transition elements where f- block elements are
251. In the f-block of element and orbitals are in the process of filling.
252. The outer most shells configuration of f-block elements is
253. The total number of elements can be accomodated in d-block in periodic table is
254 is the first and is the last transition metal in periodic table with atomic number and
255. German silver is an alloy of and .
256. The % metal is more in german silver.
257. The correct order of arrangement of m.p. of metals present in group is
258 group in periodic table contains maximum number of elements.

259. Cr^{3+} has number of electrons in t_{2g} level.
260. The complementary colour of violet is
261. Inner transition metal compounds are type of compounds not following common rule of valency.
262. Mn_3O_4 is a mixed oxide of and
263. Acidic oxides of Cr is & anhydride of
264. The magnetic moment of Mn^{2+} is BM.
265. The ns electron of transition metal responsible for metallic bonding while (n–1)d orbita cause bonding.
266. Among Ti, V, Cr and Mn has / lower m.p.
267. The metals showing highest oxidation state of +8 are with oxygen.
268. Co^{3+} present in vitamin
269. The number of unpair \overline{e} s in Mn ²⁺ (Z = 25) is
270. Brass is an alloy of —— and copper.
271. The transition metal/ion form maximum number of complexes is
272. TiCl ₃ used as catalyst in the production of polyethene.
273. The number of water molecules in Mohr's salt is
274. In the first row (3d-block) of trasition metal has positive $E^0_{M^{2+} M}$ value.
275. Betweens p and d-block of elements block elements are better reducing agent
276. Between CuI_2 and Cu_2I_2 is more stable.
277. The transition elements present in first triad is
278. The decrease in ionic radius of Lanthanides from La^{3+} to Lu^{3+} is called
279. Among the hydroxides of Lanthanoides is more basic.
280. Between Actinoid contraction and Lanthanoid contraction is greater.
Unit - IX
281. IUPAC name of $[Co (en)_3]_2 (SO_4)_3$ is ———.
282. Carnallite is a ——————————————————————————————————
283. Oxidation state of Ni in $[Ni (CN)_4]^{2-}$ is ———.
284. Denticity of EDTA is ———.
285. IUPAC name of $[Fe(CO)_5]$ is ———.
286. $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]$ Br are isomers while $[Co(NH_3)_5NO_2]Cl_2$ and $[Co(NH_3)_5ONO]Cl_2$ are isomers.
287. Stable complex is formed if EAN is equal to the ——.
288. Chemical formulae of nitropentaminecobalt (III) chloride is ——.
289. According to Werner types of valencies present for metals in complexes are — and —

290.	The coordination number of cobalt in $[Co(en)_2Cl_2]$ is ———.
291.	\overline{CN} is called ligand while $(CH_2)_2 (NH_2)_2$ is called a chelating ligand.
292.	Between Ni(CO) ₄ and $[Fe(H_2O)_6]^{2+}$ is more paramagnetic.
293.	$\left[Mn(CN)_{6} \right]^{4-}$ is an orbital complex.
294.	Argentite (Ag_2S) dissolves in KCN forming a complex. The IUPAC name of it is
295.	The co-ordination number and O.N. of iron is potassium ferrocyanide are and respectively.
296.	The IUPAC name of $K_2[Ni(CN)_4]$ is
297.	The number of moles of AgCl formed on adding excess AgNO ₃ to hexaamineplatium (IV) chloride is
298.	The aqueous solution of chloro complex of diammine platinum (IV) is an electrolyte. T/F
299.	Between $\left[Mn(en)_2 \right]^{2+}$ and $\left[Ni(en)_2 \right]^{2+}$ more stable.
300.	The formula of tetraammine dichlorido chromium (III) chloride is
301.	Complexes where more than one kind of ligand / donor group is known as complex.
Unit	- X
302.	Ethyliodide reacts with sodium ethoxide to produce
303.	When alkyl halide is treated with alcoholic KOH, the compound formed is
304.	Between 1-chlorobutane and 2-chlorobutane is optically active.
305.	$RX + KOH \rightarrow ROH + KX$ is example of reaction.
306.	The reagent required to convert CH_3I to CH_4 is
307.	For a given alcohol the order of reactivity with halogen hydraacid is
308.	The non polar compound is ($CH_3Cl, CH_3Cl_2, CCl_4, CHCl_3$)
309.	$(CH_3)_3$ CCl is named as
310.	Methylene chloride is also named as
311.	Ethylene chloride on action with alcoholic KOH gives
312.	The compound used as refrigerant is
	Çl
313.	The IUPAC name of is
314.	The structure of 2–(4–chlorophenyl) buta-1, 3-diene is

[69]

340.	The product formed when bleaching powder is distilled with acetone is
341.	Diethylketone responds iodoform test. T/F
342.	$RCl + NaI \longrightarrow RI + NaCl is known as \$
343.	Vicinal and gem-dihalide can be distinguished by
344.	C_2H_5MgBr on carboxylation gives
345.	Isopropylbromide with sodium tertiary butoxide gives
346.	Sodium tetriary butoxide with CH ₃ Br gives
347.	t-butyl bromide with sodium methoxide givesas major product.
348.	(CH ₃) ₃ CCl on Wurtz reaction gives (IUPAC name).
349.	An optically active compound must have atleast oneC atom.
350.	R CN $\xrightarrow{\text{SnCl}_2+\text{HCl}}$ RCHO, It is an example of reaction.
351.	Alkyhalide with AgCN gives
352.	Alkyl isocyanide on reduction with $LiAlH_4$ gives, which is a amine.
353.	In S_N^2 reaction the rate of reaction depends on concentration of substrate and
354.	The dipolemoments of chloromethanes follow in the order :
355.	Chlorobenzene on Friedel Crafts alkylalation givesas major product.
Unit	- XI
356.	Alcohols and ethers are isomers.
357.	The isomer of ethanol is
358.	Butan-1ol and Butan-2-ol are isomers.
359.	The number of structural isomers with formula C_4H_9OH is
360.	Alkan-1-ol is classified as
361.	Ethyl alcohol heated with conc. H_2SO_4 to give
362.	$CH_{3}-CH_{2}-CH_{2}OH \xrightarrow{PCl_{5}} A \xrightarrow{alc.KOH} B.$
363.	alcohol reacts with Lucas reagent fastest at room temperature.
364.	Primary and secondary alcohol on action of reduced Cu at 300°C give respectively.
365.	alcohol on heating with copper at 300°C gives alkene.
366.	Dehydrogenation of butan-2-ol gives, while dehydration gives
367.	gives methyl ethyl ketone on oxidation.
368.	Propan-2-ol is obtained on reduction of
369.	Maltase converts to glucose.
370.	converts glucose to, ethylalcohol.
371.	A low boiling alcohol failed to give the Lucas test, but give iodoform test. The alcohol is
372.	A compound 'X' having molecular formula, $C_4H_{10}O$ when oxidised produces an acid, $C_4H_8O_2$. The compound X is

373.	An organic compound 'X' ($C_3 H_8 O$) on treatment with acidified $K_2 Cr_2 O_7$ gives 'Y' which responds iodoform test. The compound X is
374.	Between HCHO and CH ₃ CHO does not respond to iodoform test.
375.	The IUPAC name of carbinol is
376.	In CH ₃ CH ₂ OH, the bond that undegoes heterolytic cleavage most readily is
377.	1-chlorobutane on reaction with alcoholic KOH gives
378.	Ethylalcohol is miscible in water because it forms
379.	Ethanol has higher boiling point than that of dimethyl ether. T/F
380.	Secondary alcohol on oxidation gives
381.	Phenol on reduction with zinc dust gives
382.	Formylayion of Phenol is reaction.
383.	Phenol reacts with to give o- and p- nitrophenols.
384.	Phenol with $\operatorname{CrO}_2\operatorname{Cl}_2$ gives
385.	Phenol with nitrous acid (HONO) gives
386.	Phenol is acidic but fails to gives effervescene with
387.	Phenol is named as acid.
388.	Phenol undergoes electrophilic substitution at positron.
389.	The general formula of alkenol is
390.	Ethyl iodide with dry silver oxide gives
391.	widely used as a solvent for preparation of Grignard's reagent.
392.	Phenetole with HI gives and
393.	Between phenol an cresol is more acidic.
394.	(CH ₃) ₃ COCH ₃ on hydroiodination gives and
395.	Anisole when treated with HI at 373 K, gives and
Unit	- XII
396.	Aqueous solution of formaldehyde is called
397.	The formation of cyanohydrin from a ketone is an example of ———.
398.	Aldehydes are obtained by the catalytic dehydrogenation of ———.
399.	Aldehydes and Ketones are collectively known as —— compound.
400.	Acetaldehyde + conc. H_2SO_4 polymerises to
401.	Rosenmond's reduction — and — used as catalyst.
402.	At room temp., formaldehyde is a ———.
403.	being an aldehyde, does not react with Fehling's solution.
404.	Formaldehyde with NH ₃ forms —
405.	Test that distinguishes between pentan-2-one and pentan-3-one is
406.	Between acetal dehyde and acetone is more reactive.
407.	——— distinguishes between acetaldehyde and acetone.

408.	Reduction of Ag ⁺ ions, provided by Tollen's reagent to silver metal is known as ——— test.
409.	Aldehydes restore the — colour of Schiff's reagent.
410.	Calcium acetate when heated with calcium formate forms ———.
411.	2HCHO+ NaOH \rightarrow HCOONa + ——.
	This reaction is called
412.	When acetaldehyde reacts with hydroxylamine ——— is formed.
413.	When calcium acetate is heated dry 400°C it forms ——.
414.	Ammoniacal solution of silver nitrate is known as
415.	The precipitate formed when aldehyde reacts with Fehling's solution is ———.
416.	$CH_3COOH + PCl_3 \rightarrow 3 CH_3COCl +$
417.	is the strongest of all aliphatic monocarboxylic acid.
418.	Vinegar is ——— solution of acetic acid.
419.	is the only aliphatic carboxylic acid which acts as a reducing agent
420.	When acetic acid is treated with P_2O_5 —results.
421.	IUPAC name of $CH_3CH = CHCOOH$ is ———.
422.	General formulae of aliphatic monocarboxylic acid is ———.
423.	Acetyl chloride on being treated with gives acetone.
424.	Sodium acetate is subjected to electrolysis to produce —— at anode.
425.	When sodium formate is heated upto 390°C, the product is ———.
426 .	When sodium salt of formic acid reacts with sodalime ——gas is evolved.
427.	Dehydration of an amide with P_2O_5 gives ———.
428.	sigma and Pi bonds are present in formaldehyde molecule.
429.	Fehling's solution is a mixture of — and —.
430.	When an acid is reduced with LiAlH_4 ————————————————————————————————————
431.	To produce an ester, an acid reacted upon reagent.
432.	Acetyl chloride on heating with gives acetic anhydride.
433.	Acid chlorides react with to form as ester.
434.	Acetamide reacts with bromine in presence of to produce methylamine.
435.	Acid chloride on reduction with LiAlH_4 gives
436.	Calcium salt of acid fails to form ketone.
Unit	- XIII
437.	The general formule of alkanamine is
438.	Tetra-alkyl ammonium salt is called is
439.	The structure of N-methyl benznenamine is
440.	The IUPAC name of Triemthyl amine is
441.	Benzamide with alkaline bromine gives

442.	The reagent used in Hofmann bromamide reaction is
443.	Chloramine with C_2H_5MgBr is
444.	Isocyanate (RNCO) on hydrolysis gives
445.	Mono-carboxylic acid with hydrazoic acid acid is called reaction.
446.	is formed by Schmidt reaction.
447.	is prepared by Gabriel phthalimide reaction.
448.	Between CINH_2 and CH_3NH_2 is more basic.
449.	Freshly prepared aniline is colourless but on exposure it becomes
450.	Reduction nitrile and isonitrile gives and amine respectively.
451.	NItro methane on heating with Sn and HCl gives
452.	2-nitro propane $\xrightarrow{\text{Sn/HCl}} A \xrightarrow{\text{NaNO}_2(s)} B$. Compound 'B' is
453.	The number of isomeric amines given by $C_3 H_9 N$ is
454.	Lower amines are soluble in water due to formation of
455.	Primary amine with nitrous acid gives
456.	A primary amine can be distinguished from 2° and 3° amines by reaction.
457.	The reagent that reacts with nitromethane to form methyl hydroxylamine is
458.	Chloroform with nitric acid gives
459.	The reagent required for diazotisation is
460.	Diazotisation can be carried out on cold at
461.	Between $C_6H_5CH_2$ NH ₂ and (NO ₂) CH_2NH_2 is a weaker base.
462.	The gas liberated on treatment 1 ^o -amine with nitrous acid is
463.	Ethylamine with alkaline chloroform gives
464.	Hinsberg reagent is
465.	Silver chloirde is soluble in methyl amine due to formation of
466.	The compound which on reaction with nitrous acid at low temperature produces an oily compound is
467.	Tertiaryamine, $(CH_3)_3N$ with nitrous acid on heating gives
468.	is used for dehairing hides.
469.	Formation of benzene diazonium chloride from aniline is called
470.	Benzene diazonium chloride with KI formes
471.	Benzene diazonium chloride boiled with water to give
472.	$C_6H_5NH_2 + H_2PO_2 + H_2O \longrightarrow $
473.	Arene diazonium fluoroborate on heating gives
474.	Benzene diazonium chloride with ethanol gives benzene. This a process of where ethanol acts as agent.
475.	The gas liberated on heating acetamide with NaOH is

476. The amine used for dehairing hides is
477. Quarternary ammonium salt is used in the product of
**
Unit - XV
478. Amino acids are building block of
479. Monomers of terylene is and
480. Orlon is a polymer of
481. The polymer used for making non stick utensils is
482. Teflon is a type of
483 is natural elastomer.
484. Polymerisation of ethene is
485. Natural rubber is a polymer of
486. Radio and TV bodies are made up of
487. The name saran is given to copolymers obtained by the copolymerisation of with
488. Nylon-6,6 is Co-polymer of&
489. Polymerisation of two or more different monomers gives
490. Nylon - 6, 10 is a copolymer of and
491. Glyptal or alkyl resin is a coplymer of and
492. Terelyne is nothing but a group of
493. PCTFE is obtained from
494. The monomer of Nylon-6 is
495. Condensation of phenol with formaldehyde produces a compound called
496. The growth condensation polymer is called
497. Polythene is an example of
498. Bakelite is plastic.
499. Buna - S rubber is also known as
500. Nylon, Decron, Glyptal are
501. Polythene, PVC are
502. Polymer made up of identical repeat units are known as
503. Carbohydrates and proteins are polymer.
504. Neoprene is a polymer of
505. Hexamethylenediamine is used in the manufacture of
506. Formula of Melamine is
507. Electrical insulators are made up of
508. Bakelite is — polymer.
509. Neoprene is used as

510.	Automobile tyres or shoe sole are made up of
511.	Buna-N rubber is a co-polymer of and
512.	The IUPAC name of monomer of orlon is
Unit	- XVI
513.	Phenol is used as both antiseptic as well as
514.	act as both an analgesic and antipyretic.
515.	Nature of morphine is
516.	A mixture of chloroxylenol and terpineol gives properties of dettol.
517.	Streptomycin is used to
518.	Pencillin has a spectrum.
519.	Tetracycline and chloroamphenicols are
520.	Medicines against harmful micro organisms are called
521.	Ampicillin acts as
522.	Chemicals which prevent the growth of micro organisims are called
523.	Acetyl salicylic acid is known as
524.	The oil from which soaps are prepared, belongs to a class of compound known as
	·
525.	Paracetamol is used as
526.	Mercurochrome is an example of
527.	Dettol is a mixture of and in a suitable solvent.
528.	Oils and fats are of higher carboxylic acids.
529.	Aspirin and Analgin are (narcotic/non-narcotic) drug
530.	l'incture iodine is drugs.
531.	Crocin or Phenacetin is
532.	Novalgin is an — drug.
533.	Terphenadine is a common
534.	Medicine used to prevent allergy is
535.	Boric acid used as mild
536.	To reduce the acid secretion in stomach wall the medicine generally prescribed is
**	
Unit	-XIV (Additional Questions as per original syllabus):-
537.	catalyses biochemical reactions.
538.	The metal prsent in Vit. B_{12} is
539.	Sugar present in RNA is
540.	Plant hormones are called
541.	is the chemical basis of heredity.
542.	Enzymes are globular protein soluble in and

- 543. The vitamin obtained from sunlight is _____.
- 544. The nucleic acid used in protein synthesis is _____.
- 545. The disease corneas of eyes becomes opaque is _____.
- 546. ______ is known as antisterility vitamin.
- 547. Sugar units are joined by _____ linkage, while aminoacids linked by _____ bond/linkage.
- 548. ______ is known as invert sugar.
- 549. Open chain structure of fructose contains ______ chiral centres.
- 550. On hydrolysis of starch finally ______ is obtained.
- 551. Lactose on hydrolysis gives glucose and _____.
- 552. Keratin (hair) is an examaple of _____ protein.
- 553. Boiling of an egg is called _____.
- 554. The enzyme used to convert urea to NH_3 is _____.
- 555. Insulin is responsible for metabolism of glucose, released by ______

* * *

	Chemistry				
	Answers - Group - A(2)				
1.	tetrahedral void	2.	antifluorite	3.	6:6
4.	74%	5.	octahedral voids, tetrah	edral	voids
6.	frenkel defect	7.	Covalently	8.	Na^{+}
9.	8:8	10	six	11.	co-ordination number
12.	4 (four)	13.	amorphous	14.	bcc
15.	six	16.	Cl-	17.	one, two
18.	solid, ions	19.	$2\sqrt{2}.r$	20.	six
21.	eight	22.	8, 4	23.	fcc & NaCl structure
24.	32	25.	2N, N	26.	6.023×10^{23}
27.	1.5×10^{23} (4 molecules/Un	it cub	e)	28.	4:4
29.	XY	30.	XY ₃	31.	AgBr
32.	12	33.	ABAB, ABCAI	B	
34.	increases	35.	decreases	36.	isotonic solutions
37.	elevates (increases)	38.	not zero	39.	2.28 m
40.	0.92	41.	100.102 °C	42.	MgCl ₂
43.	K _f	44.	76.4 g/mol	45.	osmosis
46.	55.56 m	47.	0.02	48.	one
49.	solid-solid	50.	K.Kg mol ⁻¹	51.	molality of solution
52.	Colligative property	53.	less	54.	zero
55.	Non-ideal, negative	56.	0.9 N	57.	g/L (strength)
58.	68.49 g/mol	59.	$1+2 \alpha$	60.	osmotic pressure
61.	Reverse Osmosis	62.	dimer	63.	Zero, nFE
64.	> 7	65.	one	66.	$O_{2}(g)$
67.	NaCl, NaH	68.	diamond	69.	Zinc
70.	3.3575 g	71.	90.71 ohm ⁻¹ cm ² /gm eq	V.	
72.	Al	73.	colourless	74.	17.23 amp/sec
75.	$0.5 \text{ ohm}^{-1} \text{ cm}^2 \text{ eqv}^{-1}$	76.	ions	77.	electrons
78.	resistance	79.	ECE (Z)	80.	anode, cathode
81.	Chemical, electrical	82.	zero		
83.	Cell potential	84.	Chemical equivalent	W ₁ /W	$_{2} = \frac{Z_{1}}{Z_{2}} = \frac{E_{1}}{E_{2}}$
85.	$(E = 96500 \times Z), E = Z.F$	86.	$ohm^{-1} cm^2 mol^{-1}$	87.	$ohm^{-1}cm^{-1}$
88.	Conductance	89.	Cathode (+)		
90.	specific resistance, sp.cond	luctar	nce		
91.	$2 \times 1.6 \times 10^{-19}$ C/ion i.e. 2F	/ mol	le	92.	electrode
93	cathode	94	1 1 volts	95	0 1 F
	- unio uo	<i>></i> 1.		,.	··· ·

$\ 99.\ k=Ae^{-La^{2}R_{1}}$ 100. sec ⁻¹ 101. second, 2	
102. three 103. pseudo-unimolecular 104. litre mol ⁻¹ sec ⁻¹	
105. temperature $106. \Delta H = Ea$ 107. first	
108. –Ea/R 109. instantaneous 110. initial conc. (a)	
111. three 112. a/k	
113. $-\frac{1}{2}\frac{d[A]}{dt} = \frac{-d[B]}{dt} = +\frac{1}{2}\frac{d[C]}{dt}$ 114. first	
115. three 116. Ea(activation energy)	
$(1)^4$	
117. $2 \times \left(\frac{1}{2}\right) = \frac{1}{8}$ 118. two 119. mol $l^{-1} \sec^{-1}$	
120. three 121. zero 122. first	
123. zero 124. one, two 125. $\frac{dc}{dt}$ (rate of react	tion)
126. molecularity 127. three 128. first	
129. 2 or 3 130. exothermic $131. \text{ MnO}_2$	
132. lowers 133. second 134. zero	
135. $-\frac{d[N_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt} = 1.0 \times 10^{-4} \text{ mol}^{-1} \text{ sec}^{-1}$	
136. Positive137. Brownian movement138. Tyndal effect	
139. gel 140. o/w 141vely	
142. peptisation 143. coagulation 144. scattering light	
145. aenosol (of solid) 146. electrophoresis / cataphoresis	
147. F 148. Flocculation 149. emulsion	
150. w/o 151. despersed phase & dispersion medium	
152. sorption 153. decrease 154. desorption	
155. bulk, surface 156. multimolecular 157. absorbed, adsor	bs
158. more 159. Helium 160. graphite	
161. decreases 162. negative $163. \text{ NH}_3$	
164. T 165. glycerol/ H_3PO_4 166. ethanol	
167. promotor 168. Mo 169. Tripsin	
170. Co-enzyme 171. Na ⁺ 172. outward	
173. hydrophobic, hydrophilic 174. bigger 175. positive	
176. emulifier177. gold number178. emulsifier	
179. micelle 180. homogeneous	
181. OH^- alkaline182. H^+ 183. amphoteric	
184. F 185. Ca, Mg 186. Copper pyrite/gl	ance
187. Zn(ZnCO ₃) 188. NaCN 189. Magnetic separation	tion
190 Leaching 191 NaCN 192 Slag	

193. CaO (lime)	194.	Ca, $Ca_3(PO_4)_2$	195. SO ₂
196. reverberatory	197.	roasting	198. smelting
199. Fe, Cu	200.	СО	201. limestone and coke
202. pig iron	203.	anode	204.99.9%
205. moisture, volatile impurities	s 206.	ZrI ₄	207. gangue
208. sulfide	209.	graphite	210. Metallurgy
211. concentration	212.	reducing	213. aluminothermy
214. aluminium	215.	anode mud	216. T
217. less	218.	mercury	
219. sp ³	220.	PH ₃	221. Fluorine
222. blue, iodine	223.	fluorine	224. linear
225. Helium	226.	bends	227. 2(dibasic)
228. XeOF ₂ + HF	229.	$NH_3 > PH_3 > AsH_3 > St$	$bH_3 > BiH_3$
98			
230. $\frac{98}{1}$	231.	NaCl +NClO	$232. SO_2Cl_2$
233 allotrope	234	I – I	235 N (g)
236. H.(g)	237.	iodide of Millon's base	H.N - Hg - O - HgI
$238 1 \cdot 3$	239	$ns^2 nn^3 (n=2 \text{ to } 7)$	240 N O
241 H PO	242	nyramidal tetrahedral	$243 \text{ N} \Omega$
244 SO	245	resonating	246 S
247 reduction	248	iodine	249 oxidising agent
250 inner transition elements	251	4f & 5f	252 n-2f ⁽⁰⁻¹⁴⁾ (n-1)d ^{0(or)1} ns ²
253 forty	254	Sc. $Cn(21-112)$	255 Cu Ni Zn
256 Copper (60%)	257	increasing from top to h	ottom
258. 3rd group (32) elements	259.	three	260. vellow
261. non-stoichiometric (intersti	tial)		262. Mn(II)O, Mn(III)O,
263. CrO ₂ (H ₂ CrO ₄)	264.	$\sqrt{35} = 5.92$	265. covalent
266 Mn	267	$R_{\rm H} Os(OsO)$	268 B
269 five $(3d^5)$	270	7n	271 Co(II) or Co(III)
209. Rve (3u) 272. Zeigler-Natta	273	SIX	$274 \text{ Cu}^{2+ \text{Cu} }$
272. 2019101 T (utu	275.	$C = L \begin{bmatrix} 2C \\ 2^+ \end{bmatrix} + A = -C$	
275. s	276.	$\operatorname{Cu}_2 \operatorname{I}_2 \lfloor 2\operatorname{Cu}^2 + 41 \rightarrow 0$	$u_2 I_2 + I_2 \rfloor$
277. Fe, Co, Ni	278.	Lanthanide	279. $La(OH)_{3}$
280. Actinoid			
281. Trisethylenediaminecobalt(III) su	llfate	282. double
283. +2	284.	six	285. pentacarbonyliron (0)
286. ionisation, linkage	287.	atomic no. of nextnoble	gas
288. $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{NO}_2\right]\operatorname{Cl}_2$	289.	primary, secondary	
290. six	291.	ambidentate	292. $[Fe(H_2O)_6]^{2+}$

294. K $\left[Ag(CN)_{2} \right]$, Potassiumdicyanido argentate (I) 293. inner 295. 6, 2 296. Potassium tetracyanido nickelate (II) 297. $\left[Pt(NH_3)_6 \right] Cl_4 \xrightarrow{4AgNO_3} 4AgCl$ 298. $\left[Pt(NH_3), Cl_4 \right]^0$, F 300. $\left[\operatorname{Cr}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]\operatorname{Cl}$ 299. $[Ni(en)_2]^{2+}$ 301. heteroleptic Unit-X 302. diethylether 303. alkene 304.2-chlorobutane 306. Zn-Cu couple + ethanol 305. S_N 307. HI > HBr > HCl > HF308. CCl₄ 309. 2-chloro-2-methyl propane 310. dichloromethane 311. acetylene $CH \equiv CH$ 312. freon 313. 3-bromo-1-chloro cyclohexene 314. $H_2C = C - CH = CH_2$ 315. fluorobenzene 316. p-dichlorobenzene 317. Fittig reaction 318. (iv) > (iii) > (ii) > (i)319. Wurtz reaction 320. C₆H₅-CH₃ (Wurtz-Fittig reaction), 1-bromopropane 321. 1-Bromo-1-phenyl ethane 322. $CH_3 - CH_2 - NH_2$ 323. Kharasch, 1-bromopropane 324. H₃PO₃ 325. POCl₃ + HCl 326. Na-dryther 327. 2-Bromopropane, Markownikoff's 328. Mg 329. 2,3- dimethyl but -2- ene 330. Sandmeyer's 331. CH₃Br+CO₂, Hunsdiecker reaction. 332. acidic 333. CCl₄ 334. RI > RBr > RCl335. alc. AgNO₃ 336. $(CH_3)_2 C - Br$ 337. Mg, dryether 338. AdN 339. KCN 340. Chloroform 341.F 342. Finkelstein 343. KOH(aq) 344. propanoic acid 346. CH₃-O-C(CH₃)₃ 345. propene 347.2-methyl propene 348. 2, 2, 3, 3-tetramethyl butane 349. chiral/asymmetric 350. Stephen's reaction 351. RNC 352. N-methyl (alkanamine, (2⁰) 353. reagent (nucleophile) 354. $CH_3Cl > CH_2Cl_2 > CHCl_3 > CCl_4$ 355. p-chlorotoluene 357. methoxy methane 356. functional 358. position 359. Seven 360. primary alcohol 361, ethene 362. propene 363. 3^o-alcohol 364. aldehyde and ketone 365. Tertiary 366. butanone, butene 367. Buton-2-ol 368. propanone

369. maltose 370. zymase 371. ethylalcohol 372. Butan-1-ol 373. CH₃CH(OH)CH₃ 374. HCHO 375. methanol 376. –О–Н 377. But-2-ene (2° carbocation > 1°) 378. H-bonding 379. True(T) 380. ketone 381. benzene 382. Reimer-Tiemann 383. dil.HNO₃ 384. p-benzoquinone 385. p-nitro phenol 386. NaHCO₃(Aq) 387. Carbolic 388. o-/p-389. $C_n H_{2n} O$ 390. diethyl ether 391. diethylether 392. phenol & C₂H₅I 393. phenol 394. (CH₃)₃CI, CH₃OH 395. C₆H₅OH, CH₃I 396. formalin (40% Aq) 398.1°-alcohol 397. Ad_N 400. paraldehyde, (CH₃CHO)₃ 399. carbonyl 401. Pd-BaSO₄ 402. gas 403. benzaldehyde 404. urotropine, $(CH_2)_6N_4$ 405. iodoform test (I_2 +KOH) 406. acetaldehyde 407. Tollen's reagent 408. silver minor 409. pink (p-rosalin hydrochloride decolarised by SO_2) 410. acetaldehyde 411. CH₃OH (Cannizzaro's reaction) 412. acetaldehyde-oxime 413. acetone 414. Tollen's reagent 417. Formic and (HCOOH) 415. Cuprous oxide (red) 416. H₃PO₄ 419. HCOOH $(+O \rightarrow CO_2 + H_2O)$ 418. 5-8% acetic acid by vol 420. acetic anhydride 421. But-2-enoic acid 422. $C_{n}H_{2n}O_{2}$ 423. (CH₂)₂Cd 424. ethane 425. Sod. oxalate $+ H_{2}$ 426. Hydrogengas $(+Na_2CO_3)$ 427. RCN (alkane nitrile) 428. three, one 429. $CuSO_4(aq)$ + Rochelle salt 430. R CH₂OH (1^o-alcohol) 431. alcohol 432. Sod. acetate 433. an alcohol 434. KOH 435. primary alcohol 436. formic acid 437. RNH₂, CnH_{2n+3}N 438. quarternary ammoniumsalt NH-CH₃ 439. 440. N, N-dimethyl methanamine 0 441. $C_6H_5NH_2$ (aniline) 442. $Br_2 + KOH$ 443. $CINH_2 + C_2H_5MgBr \longrightarrow C_2H_5NH_2 + Mg(Br)Cl$ 444. RNCO + $H_2O \xrightarrow{OH^{=}} RNH_2 + CO_2$ (Curtius reaction) 445. RCOOH + HN₃ $\xrightarrow{H_2SO_4}$ RNH₂ + N₂ + CO₂ (Schmidt reaction) 447. aliphatic 1^o-amine 448. CH₃NH₂(+ I effect) 446. Primary amine 449. blackish brown (atmospheric oxidation) 450. 1° and 2°

451. methanamine 452. CH₃-CH(OH)CH₃ 453. Four. $[CH_3 - CH_2 - CH_2NH_2, CH_3 - CH(-NH_2)CH_3, CH_3 - CH_2NH - CH_3, (CH_3)_3N]$ 454. inter molecular H-bonding 455.1°-alcohol 457. Zn+NH₄Cl 456. Crabylamine 458. $Cl_3CH+HONO_2 \longrightarrow Cl_3CH-NO_2$ (Chloropicrin) 459. NaNO₂(s)+di/HCl (at 5° C) 460. 0-5°C 461. NO₂-CH₂-NH₂ (-I effect) 462. N₂(g) 463. Carbylamine 464. $C_6H_5SO_2Cl$ 465. $\left[Ag(CH_3NH_2)_2\right]Cl$ 466. 2° amine, C₆H₅NH-CH₃+HONO $\rightarrow \begin{pmatrix} CH_3 \\ \\ C_6H_5 - N & N = O + H_2O \\ \end{pmatrix}$ (Yellow) (nitrosoamine) 468. CH_3NH_2 , $C_2H_5NH_2$ 469. diazotisation 470. C₂H₂I 471. phenol 472. $C_6H_5N_2Cl + H_3PO_2 + H_2O \longrightarrow C_6H_6 + H_3PO_3 + HCl + N_2$ (Benzene) 473. $C_6H_5F+N_2+BF_3$ 474. deamination reducing475. ammonia476. CH_3NH_2 477. Surface478. Protein479. ethylene glycol & Terephthalic acid480. acrylonitrile481. Teflon482. addition 477. Surfactant (detergent) 482. addition polymer 483. natural rubber 484. polythene 485. isoprene (cis-1, 4-polyiosprene) 486. polystyrene or styron 487. vinyl chloride (CH₂ = CHCl) & vinyldene chloride, CH₂ = CCl₂ 488. $NH_2(CH_2)_6$ – NH_2 and adipic acid 489. co-polymer 490. $H_2N(CH_2)_6 - NH_2 + Sebacoylchloride$ 491. ethylene glycol & phthalic acid 492. (poly) ester (condensation type) 493. $\frac{\text{Cl}}{\text{F}} \subset = C \begin{pmatrix} F \\ F \end{pmatrix} (C_2F_3\text{Cl})$ 494. caprolactum 495. bakelite 496. step growth polymerisation 498. thermosetting plastic 497. thermoplastic polymer

499. co-polymer of butadiene &	500. co-polymer	
501. homopolymer	502. homopolymer	503. natural polymers
504. 2-chlorobuta-1, 3-diene (C	Chloroprene)	505. Nylon 66
506. $NH_2 \rightarrow NH_2 NH_2$ N NH ₂	507. bakelite	508. Condensation
509. rubber	510. Buna-S	
511. butadiene and acrylonitrile		512. propenenitrile
513. disinfectant	514. Aspirin	515. analgesic or hypnotic
516. antiseptic	517. cure diseases caused by	y gram+ve, –ve bacteria.
518. narrow	519. broad spectrum antibio	tic
520. broad spectrum antibiotic	521. antibiotic	522. antiseptic
523. aspirin	524. ester	525. antipyretic
526. antiseptic	527. Terpenol and chloroxyl	enol
528. triglycerides	529. non-narcotic	530. antiseptic
531. antipyretic	532. analgesic	533. antihistamine
534. cetrizine	535. antiseptic	536. ranitidine
**		
537. Enzyme	538. cobalt	539. ribose
540. Phytohormones (auxins)	541. DNA	542. alcohol, water
543. vit. D	544. RNA	545. Xerophthalamia
546. vit. E	547. glycosidic, peptide	548. sucrose
549. three	550. glucose	551. galactose
552. fibrous	553. denaturation	554. urease
555. pancreas		
	* * *	

Very Short Answer type Questions (One mark each) :

Group - A(3)

Answer the following :

Unit - I

- 1. Arrange simple cubic, body centred cubic and face centred cubic lattice in increasing order of the fraction of the occupied space.
- 2. What is the C.N. of octahedral void ?
- 3. What is C.N. of tetrahedral void ?
- 4. What make alkali metal halides sometimes coloured which are otherwise colourless?
- 5. What are the structures of NaCl and CsCl?
- 6. In which defect the crystal loses its density?
- 7. What is packing effeciency of simple cubic crystal?
- 8. What is F– centre ?
- 9. ZnS shows Frenkel defect explain.
- 10. What are the number of C \vdash ions present around Na⁺?
- 11. What is co-ordination number?
- 12. What type of forces operate in molecular solid ?
- 13. Write two characteristic properties of molecular solid.
- 14. Ionic solid behaves as an insulator explain.
- 15. What is meant by point defect in crystal?
- 16. Mention the type of interaction / bond present in following :

ice, diethyl ether (s) NaCl, Silicon carbide

- 17. How many lattice point are there in one unit cell of each of the following lattice ?
 - (i) Fcc (ii) bcc
- 18. What are the possible variation in orthorhombic crystal system?
- 19. Identify the primitive unit cells in crystals.
- 20. Name the lattice where edges and angles are identical.
- 21. What types of solid are electrical conductors, malleable and ductile?
- 22. What are Bravais lattices ?
- 23. Why is glass considered as a super cooled liquid ?
- 24. Name a covalent solid that conducts electricity.
- 25. Choose the amorphous solids from among the following ?Polytrethene, benzoic-acid, coke, copper, cellophane, potassium nitrate, teflon.
- 26. Amorphous solids are isotropic explain.
- 27. What happens when crystalline solids are heated ?
- 28. Provide two examples molecular solids.

Unit	- 11
29.	Mention the important use of reverse osmosis (RO)
30.	Provide two examples of ideal solutions.
31.	Is solution of chlroform and acetone an ideal solution?
32.	What is Charles - van'Hoff law?
33.	What happens to acetic acid in benzene and water (solvents)?
34.	Define molefraction?
35.	Identify the concentration terms independent of temperature.
36.	What is the mole fraction of 1 molal aqueous solution?
37.	The vapour pressure is reduced to 80%. What is relative lowering of vapour pressure ?
38.	How does the solubility of gas in liquid change with temperature?
39.	What happens to the b.p. if vapour pressure is reduced?
40.	At what % ethanol - water forms a minimum boiling azeotrope. Mention the b.p. of the azeotrope.
41.	Arrange the aqueous solutions in order of increasing boiling point : 0.01 m urea, 0.01 m sodium chloride, 0.01 m sugar, 0.01m potassium sulfate.
42.	How does osmotic pressure change with temperature and concentration?
43.	Name a compound which has the same i value with potassium ferrocyanide.
44.	Write down the units of molarity, molality, normality, strength and mole fraction.
45.	Camphor is prefered as solvent for measuring the molecular mass of naphthalene by-Rust method. Why?
46.	Distinguish between b.p. and normal boiling point of a liquid.
47.	Why does sea water boil at higher temperature?
48.	2 gram each of two solutes A and B (molecular mass of $A > B$) are dissolved separately for 50 gram each of water. Which will show higher boiling point ?
49.	Provide an example of maximum boiling azeotrope.
50.	How is colligative property (ΔT_b) related to molar mass of solute ?
51.	Mention T/F
	 (i) K_H is directly proportional to solubility of gas is a solvent. (ii) Osmosis takes place from hypotonic solution to hypertonic solution.
Unit	- 111
52.	What is electrochemical equivalent?
53.	Can nickel spatula be used to stire a solution of $CuSO_4$?
	[Given $E_{Ni^{2+} Ni}^{0} = -0.25V$; $E_{Cu^{2+} Cu}^{0} = +0.34V$
54.	What is relationship between Gibbs free energy change and cell potential?
55.	In the electrolysis a solution containing H^+ and Cu^{2+} ion, at cathode $H_2(g)$ is liberated. Is the statement correct ?
56.	Notation of SHE.

U

- 57. Name the electrode which has oxidation and reduction potential identical.
- 58. Write down the unit of specific conductance / equivalent conductance / molar conductance.
- 59. Provide the direction of movement of \overline{e} in galvanic cell.
- 60. What is unit of emf?
- 61. What is an electrochemical cell?
- 62. What is charge on the proton (H^+) ?
- 63. Provide two examples in each case of strong electrolytes and weak electrolytes.
- 64. Write down the cell notation of Daniell cell.
- 65. Find out the standard emf. of Daniell cell.
- 66. $Cu + 2Ag NO_3 \longrightarrow Cu(NO_3)_2 + 2Ag$. Represent the cell.
- 67. Identify the salt used in salt bridge.
- 68. Write down the equation relating \wedge and concentration.
- 69. What will be the cell constant of a conductivity cell if specific conductance and conductance of a solution are of equal vaue ?
- 70. Writedown the coulombs of change required for the reduction of (i) 1 mole AB^{+} to Al (ii) 0.1 mole Cu^{2+} to Cu (iii) 6.023×10^{22} MnO₄⁻ ions to Mn²⁺.
- 71. How much electricity required to liberate 11.2 L of oxygen at NTP from water?
- 72. Identify two metals that decolorises copper sulfate solution (Blue).
- 73. What is the relationship between standard reduction potential and equilibrium constant?
- 74. What is the standard potential of $Cu-AgNO_3$ cell?
- 75. What do you mean by a weak electrolyte?
- 76. Define degree of ionisation?
- 77. What is electrode potential?
- 78. What is an electrolyte?

79.
$$\frac{W_1}{W_2} = \frac{E_1}{E_2} = \frac{Z_2}{Z_1}$$
. Is it a correct expression?

- 80. What is cell constant?
- 81. Suggest some metals that are extracted electrolytically.
- 82. If a current of 0.5 amp flows through a metallic wire for 2. hours then how many $\overline{e}(s)$ flow through the wire ?
- 83. What is the basis on which anode on cathode is identified in a chemical cell?
- Unit IV/
- 84. For a reaction $A + H_2O \longrightarrow B$, rate = $k[A][H_2O]^0$. What is the molecularity and order of reaction.
- 85. What is an elementary reaction ?
- 86. When ln k is plotted against $\frac{1}{T}$, the slope was found to be -10.7×10^3 K. What is the activation energy?

	k_2
87.	What is the value of $\log \frac{100}{k_1}$, if the temperature of a reaction changes from T ₁ to T ₂ ?
88.	How will rate of reactions change when [A], is doubled for
	(i) zero order reaction
	(ii) second order reaction ?
89.	Calculate the order reaction having the rate expression,
	rate = $k[A]^{\frac{1}{2}}[B]^{\frac{1}{2}}$
90.	The complex reaction as a whole has no molecularity. T/F
91.	Provide one example of first order reaction, unimolecular reaction.
92.	Give one example of zero order reaction.
93.	What is an activated complex ?
94.	The half life period of a first order reaction is 60 min. Calculate the time required for completion of 90% of the reaction.
95.	99% of the reaction.
96.	99.9% of the reaction.
97.	A reaction is found to be zero order. Will its molecularity be zero?
98.	Can reaction have negative activation energy?
99.	What do you mean by rate determining step?
100.	Calculate the value of rate constant of a first order reaction having half life period 10 minutes.
101.	Define activation energy.
102.	Define Half life period of a reaction.
103.	Define collision frequency.
104.	What is a pseudo first order reaction?
105.	Write down the average rate expression for $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$.
106.	The conversion of molecules $X \rightarrow Y$ follows second order kinetics. If concentration of X tripled how it will affect rate of formation of Y.
107.	What is value of temperature co-efficient of a reaction?
108.	What is value of k at extremely high temperature $(=\infty)$? Is it feasible?
109.	The rate law for a reaction is, rate = $k[A][B]^{\frac{3}{2}}$. Is the reaction an elementary one ?
Unit	- V
110.	What is adsorption ?
111.	Define molar heat of adsorption.
112.	What is the binding force in physisorption ?
113.	What is name of the process of removing an adsorbed substance from the surface of adsorbent?
114.	Why animal charcoal is used for purification of sugar?

- 115. Why colloids can not be filtered by ordinary filter paper?
- 116. Compare is the size of colloidal and crystalloid particles ?
- 117. Give an example of emulsion.
- 118. Why does colloidal solution coagulate on addition of electrolyte?
- 119. What is the sign of heat of adsorption?
- 120. Why alum is used for clearing muddy water ?
- 121. How does extent of adsorption change with temperature, pressure?
- 122. What do you mean by positive and negative adsorption?
- 123. Catalysts are adsorbents _____ is it so ?
- 124. What is flocculation value?
- 125. Calculate the flocculation value of KCl if 5ml of 1M solution is added to 100 ml of arsenic sulfide sol so as to bring complete coagulation.
- 126. How can you know that milk is an o/w emulsion?
- 127. Colloids are heterogeneous in nature, give reason.
- 128. What is a colloidal solution?
- 129. Why does smoke from a fire often with a blue tinge ?
- 130. What will happen if equimolar solutions of positively and negatively charged solutions be mixed ?
- 131. What is collodion?
- 132. What is dispersion medium in gel?
- 133. For coagulation of 500 ml of arsenic sulfide (-ve sol), 2 ml of 1 M NaCl is required. What is the flocculation value of NaCl_____.
- 134. Name the enzyme to prepare ethanol from glucose.
- 135. Why is it necessary to remove CO during synthesis of NH₃ by Haber's process.

Unit - VI

- 136. Name two metals isolated by electrometallurgy?
- 137. Identify two minerals having more than one metal.
- 138. Which is the cheapest reducing agent used in Metallurgy?
- 139. Write a method for refining of copper / Al.
- 140. Write down the composition of brass, bronze.
- 141. What is germen silver?
- 142. Name any two alloys of steel.
- 143. Write the formulae of zincblende, greenvitriol.
- 144. What happens when calamine is calcined?
- 145. What is flux ?
- 146. Provide two examples of acidic flux.
- 147. All minerals are ores. T/F
- 148. What is slagging?

- 149. What is auto-reduction?
- 150. Name the important ores of Fe/Al/Cu.
- 151. Explain the term 'Levigation'.
- 152. Which type of metals are concentrated by liquation method?
- 153. Magnetite is an ore magnesium. T/F
- 154. Manganin is an alloy of copper used in electrical apparatus. It contains lowest percentage of maganese. Rewrite with correction if any.
- 155. What do you mean by matte?
- 156. What type of ore generally roasted ?
- 157. What is pyrometallurgy / electrometallurgy / hydrometallurgy ?
- 158. Why is copper matte put in silica lined convertor ?
- 159. How is 'cast' iron different from 'pig' iron?
- 160. Arrange in order of increasing stability : MgO, ZnO, FeO, Cu_2O

Unit - VII

- 161. What happens of the bond angles of hydrides of group 15/16?
- 162. Compare the acidic nature of oxides of nitrogen family.
- 163. Arrange the hydrides of group-15 in order of increasing nature as reducing agent.
- 164. Arrange the noble gases in the increasing order of their abundance.
- 165. Write down two uses of XeF_2 .
- 166. What are the products formed when nitrous acid undergoes disproportionation?
- 167. Which oxide of nitrogen used as rocket fuel?
- 168. What is carbogen? What is Its use?
- 169. Arrange the fallowing in-order of increasing acid strength $HCIO_4$, $HCIO_2$, $HCIO_3$, $HCIO_3$, $HCIO_3$.
- 170. NO is paramagnetic in gaseous state but diamagnelic in liquid and solid stale.
- 171. H_3PO_2 in monobasic while H_3PO_3 in dibasic: Justify.
- 172. Show that Na_2O_2 is a peroxide,
- 173. Draw the structure of pyrosulfuric and pyrophosphoric acid.
- 174. What happens to following test tubes containing (i) cane sugar (ii) Sodium bromide (iii) Copper turnings (iv) sulfur powder (v) Potaslum chlonde, on heating with cone. H₂SO₄?
- 175. NF_3 and PF_3 are not hydrolysed. Give reason.
- 176. Which are the anhydrides of HNO_3 and H_3PO_4 ?
- 177. Balance the following.

 $Cu+HNO_3 \longrightarrow Ca(NO_3)_2 + H_2O+NO$

- 178. What happens when NH_4Cl reacts with quick lime?
- 179. How can you get nitric acid from potassium nitrate?
- 180. Which catalyst in used in the manufacture of NH_3 by Haber's process?
- 181. What happens when NH_4NO_3 is strongly heated?

- 182. What substance is used to dry NH₃?
- 183. Why is P_2O_5 not used to dry NH_3 ?
- 184. Name the catatyst used in Ostwalds process to manufacture HNO₃.
- 185. Write the reaction of the thermal decomposition of NaN₃ azide.
- 186. Name the types of salt formed on neutralization of H_3PO_4 by NaOH.
- 187. What happens when H_3PO_4 is heated?
- 188. How do you account for the reducing behaviour of H_3PO_2 on the basis of its structure.
- 189. Which of the following does not react with oxygen directly? Zn. Ti. Pt, Fe
- 190. Name the compound, formed when Al_2O_3 reacts with (i) acid (ii) alkali
- 191. Draw the resonance hybrid of ozone and mention the bond angle and bond length.
- 192. Is S₂molecule paramagnetic in nature?
- 193. Write down the equation of SO_2 with Fe^{3+} .
- 194. Mention three areas in which H_2SO_4 plays an important role.
- 195. Identify two reagents to liberate chlorine from HCl.
- 196. Name the poisonous gases which can be prepared from chlorine.
- 197. How gases $Cl_2(g)$, $SO_2(g)$ getting dried?
- 198. Write an equation where SO_2 acts as oxidizing agent.
- 199. What is the basicity of sulfuretted hydrogen/ hydrosulfuric acid?
- 200. What happens when paper soaked in lead acetate solution is shown in $H_2S(g)$?
- 201. Name. two allotropic modifications of sulfur.
- 202. Write the electronic configuration of second element of group-16
- 203. Which oxide of group-16 is amphoteric in nature?
- 204. HP is less volatile than HCl. why?
- 205. Arrange the halogen hydrides in the order of bond length.
- 206. Which of halogen form H-bonding?
- 207. Which halogen shows only one O.N. in its compounds.
- Unit VIII
- 208. Write down the electronic configuration of Cr^{3+} and Cu^{2+} .
- 209. Which elements of transition series don't almost resemble the rest of the members in their characteristics?
- 210. Why copper corrodes in moist air producing green layer on its surface ?
- 211. What are the colours of $Fe^{2+}(Aq)$ and $Fe^{3+}(aq.)$?
- $212. \ \ \, Name the trivalent lanthanoid of maximum size.$
- 213. Which substance is prepared from Kipp's waste?
- 214. Identify a property to justify the presence of Zn in d-block.
- 215. What are actinoids?
- 216. Write two alloys of steel.
- 217. Which are the purest and impure form of iron ?

- 218. Name the furrance to get blister copper.
- 219. What is the gas present in blister copper?
- 220. What is the molecular formula of feric chloride in anhydrous state?
- 221. Why transition elements are hard?
- 222. Which is the lightest transition metal?
- 223. Write the formula of rouge?
- 224. What is annealing?
- 225. Name the three groups d-block where horizontal similarity dominates.
- 226. Identify the low cost catalyst during hydrogenation of oil (unsaturated) to fat (saturated).
- 227. What is the most common oxidation state of Lanthanoids ?
- 228. Write down the oxidation states exhibited by Mn(Z=25).
- 229. Name the elements with which metal/ element can have highest (positive) O.S.
- 230. Predict which of the following ions are coloured & write their d-electrons.

 Cu^{2+} , Zn^{2+} , Sc^{3+} , Ni^{2+}

- 231. Mercures ion is written as Hg_2^{2+} instead of Hg^+ .
- 232. Why large number of oxidation states exhibited by actinoids than corresponding lanthanoids ?
- 233. Transition metal exists in its highest oxidation state better behaves as an oxidising agent. Give reason.
- 234. Why Fe^{3+} is most common?
- 235. What is the maximum O.S. of actinoid ?
- 236. Why CuCl is colourless while $CuCl_2$ is blue. Is it so ?
- 237. Why the properties of 3rd transition series are very similar to 2nd transition series ?
- 238. $La(OH)_3$ is more basic than $Lu(OH)_3$?
- 239. Arrange MnO_4^- , $Cr_2O_7^{2-}$, VO_2^+ in order of increasing oxidising power.

Unit - IX

- 240. What does 'en' represent in Co-ordination chemistry. How many co-ordination sites does it have ?
- $241. \ \ Give the chemical formula of potassium hexacyanido ferrate (II).$
- 242. What does EDTA stand for ? Write its structure.
- 243. Calculate the number of unpair electrons in the following complexes.

i) $\left[Cr(NH_3)_6 \right]^{3+}$, ii) $\left[CoF_6 \right]^{3-}$ iii) $\left[Fe(CN)_6 \right]^{3-}$

- 244. Provide the IUPAC names of the above ions.
- 245. Why are tetrahedral comlexes high spin?
- 246. What is the name of $\left[Co(NH_3)_5(NO_2) \right] (NO_3)_2$.

- 247. Write the hybridisation and shape of $\left[\operatorname{Ni}F_4\right]^{2-1}$
- 248. A CuSO₄ solution is mixed with $(NH_4)_2$ SO₄ in the ratio 1 : 4, does not give test test for Cu²⁺. Explain.
- 249. On the basis of CFT, write the d⁴ configuration $\Delta_0 < P$.
- 250. Which of the following is more stable ? & name it $[Co(NH_3)_6]$ and $[Co(en)_3]^{3+}$.
- 251. Write the shape and magnetic behaviour of $\left[Co(NH_3)_6 \right]^{3+}$.
- 252. Between CO, CN⁻ which forms more stable complex ?
- 253. Show the magnetic behaviour of hexafluoridocobaltate (III)
- 254. $\left[Ni(H_2O)_2(OX)_2 \right]^{2+}$ is an outer orbital complex, is it so ?
- 255. $\left[\text{Fe}(\text{CN})_6 \right]^{4-}$ and $\left[\text{Fe}(\text{H}_2\text{O})_6 \right]^{2-}$ are of different colour is solution.
- 256. What are ambident ligands?
- 257. What is denticity?
- 258. What are different 'd'-orbitals?
- 259. What is spectrochemical series?
- 260. EDTA used as water softening agent. explain.
- 261. Gold is extracted from its ore on treating it KCN. Give reason.
- 262. Why sulfide ore is leached with NaCN?
- 263. What is the shape of hexacyanido ferrate (II) ion?
- 264. What is valency of Ru in K_{2} [Ru(OH)₄Cl₂]?

265. What is the C.N and O.N. central metal ion in $\left[\operatorname{Fe}(C_2O_4)_3\right]^{3-}$.

Unit - X

- 266. Which will react faster in S_N -2 reaction in respect of KOH (aq).
 - (i) CH_3Br, CH_3I
 - (ii) $(CH_3)_3CCl, CH_3Cl$

 - (iii) $CH_3-CH_2-CH_2Br$, $C_6H_5-CH_2Br$ (iv) $CH_2 = CH-CH_2Br$, $CH_3-CH_2-CH_2Br$ (v) $CH_2 = CHBr$, CH_3-CH_2-Br

 - (vi) Chlorobenzene and chlorocyclohexane
- 267. In the following pairs of halogen compounds, which compound undergoes faster S_N -1 reaction?

(i)
$$(CH)_{3}CCI, C_{2}H_{5}CH-C_{2}H_{5},$$

(ii) (iii) C_6H_5Cl , $C_6H_5CH_2Cl$, (iv) C_6H_5Cl , $(C_6H_5)_2CH-Br$ (v) $CH_3 - CH_2 - CH_2Cl$, $CH_2 = CH - CH_2Cl$ 268. Draw the structural isomers of the compound C_4H_0Br Name and classify as 1^0 , 2^0 or 3^0 . 269. Provide the structures of the following : 1-Bromo-4-sec. butyl-2-methyl benzene (i) (ii) 1, 4-dibromobut-2-ene 270. Complete the reactions with appropriate product (s). $CH_3 - CH_2OH + KI + H_3PO_4 \longrightarrow$ (i) (ii) $CH_3 - CH(OH) - CH_3 + Br_2 + \xrightarrow{red(p)}$ 271. Name the product when $Cl_{2}(g)$ is passed under U.V. light inside (i) n-butane and isobutane (ii) $(CH_3)_2 CH - CH_2 - CH_3$ 272. $B \xleftarrow{\text{Na/alcohol}} A \xleftarrow{\text{AgCN}} CH_3 - CH_2 Br \xrightarrow{\text{KCN}} A_1 \xrightarrow{\text{Na/alcohol}} B_1$ Identify the compounds A, B and A₁, B₁. 273. What are (i) Swart's reaction? (ii) Finkelstein reaction? 274. Arrange the following compounds in order of increasing boiling points. Bromomethane, bromoform, chloromethane, dibromomethane (i) 1-chloropropane, isopropyl chloride, 1-chlorobutane (ii) 275. Predict the isomers of bromobutane and arrange in order of increasing reactivity towards S_{N} -1 reaction. 276. In the following pairs of halogen compounds which would respond faster to react with KOH(aq). $\langle CH_2 Cl \text{ and } \langle \rangle - Cl$ (i) (ii) \square and \square (iii) $(CH_3)_3 CCl$ and $\langle O \rangle - CH_2 Cl$ 277. Identify the reagent(s) for the following conversion. $CH_3 - CH = CH_2 \longrightarrow CH_3 - CH_2 - CH_2Br$ (i)

 $CH_3 - CH_2 - CH_2Br \longrightarrow CH_3 - CH_2 - CH_2NC$ (ii) (iii) $CH_3 - CH_2 - Br \longrightarrow CH_3 - CH_2 - NO_2 \longrightarrow CH_3 - CH_2 - NH_2$ (iv) $C_6H_5 - Cl \longrightarrow C_6H_5CN \longrightarrow C_6H_5CHO$ (v) $CH_3 - CH_2Br \longrightarrow But - 1 - yne$ 278. What type of isomerism is shown by 1,2 dibromo ethene? Between these two which has higher m.p. and higher b.p. 279. Between 1-bromobutane and 2-bromobutane which one is optically active ? 280. Hydrocarbons molecular formula C_5H_{12} and C_5H_{10} give a single monochloro compound in bright sunlight. Name tthese. \rightarrow Br + Mg $\xrightarrow{dryether}$ A $\xrightarrow{H_2O}$ 281. 282. Name the alkenes that would be formed by dehydrohalogenation of the following in presence of sodium ethoxide & ethanol. 1-Bromo-1- methyl cyclo hexane (i) (ii) 2-chloro-2-methyl butane 283. Write the structure of the major product of the following : (i) $(CH_3)_3 C - Br \frac{alc.}{KOH}$ (ii) $CH_3 - CHBr - CH_3 \xrightarrow{KOH(aq)} \rightarrow$ (iii) $CH_3 - CH_2 - Br + KCN \xrightarrow{CH_3} CH_2OH(Aq)$ (iv) $C_6H_5ONa + C_2H_5Cl \longrightarrow$ (v) $CH_3 - CH = C \swarrow CH_3 + HBr \longrightarrow$ 284. Name the product, if following alkyl halides undergoing Wurtz reaction : isobutyl bromide (i) (ii) isopropyl bromide (iii) sec.butyl bromide (iv) chlorocyclopropane 285. What is β . elimination? 286. State Saytzeffrule. Unit - XI 287. Name the isomers of the alcohols with moelcular formula $C_4H_{10}O$. 288. Identify the first member of the optically active monohydric alcohol.

300. Predict the products : $CH_3-CH_2-CH_2-O-CH_3 + HBr \rightarrow$ i) $ii) \quad C_6H_5 - OC_2H_5 \xrightarrow{HNO_3} \rightarrow$ iii) $C_6H_6 - O - C_2H_5 \xrightarrow{HBr}$ iv) (CH₃)C–O–C₂H₅ \longrightarrow v) $C_6H_5CH_2 - O - C_6H_5 \xrightarrow{KI+H_3PO_4}$ 301. Arrange the following in order of increasing acid strength: o-nitrophenol, m-nitrophenol, p-nitrophenol 302. Find the order of reactivity of HX to cleave the C-O bond is ether. 303. Name the reagent (s) used in the following reactions : 1º alcohol to corboxylic acid. i) 1[°] alcohol to aldehyde ii) Bromination phenol to 2, 4, 6 tribromo phenol. iii) benzylalcohol to benzoic acid. Ethylalcohol to diethylether iv) v) Butan-2-one to butan-2-ol vi) $CH_3 - CH = CH - CHO$ to $CH_3 - CH = CH - CH_2OH$ vii) $CH_3 - CH = CH - CHO$ to $CH_3CH_2 - CH_2 - CH_2OH$ viii) $CH_3 - CH = CH_2 - CHO$ to $CH_3 - CH_2 - CH_2 - CH_3$ ix) CH₂OH ,CH₂Br to (x) 304. Mention equation to show acidic nature of phenol. 305. Provide equation of the following reactions : (i) Oxidation of propan-1-ol with alk. KMnO₄. (ii) Bromine in CS_2 with phenol (iii) Phenol with dil HNO_3 (iv) Treating phenol with alkaline chloroform and CCl₄ separately. 306. Arrange the cresols in order of Ka value. 307. Arrange the order of ease of esterification of alcohols with a given acid.308. Name the alcohol failing to give VictorMeyer's state. Unit - XII 309. What happens when ethyl benzene is treated with chromyl chloride in CCl, medium? 310. What type of reaction is carried out by carbonyl compounds? 311. Write down the physical state of aldehyde & ketone. 312. What is RDX?

313.	Benzophenone fails to react with NaHSO ₃ . F/T			
314.	Name the following :			
	СНО О СНО			
	ĊH ₃			
315.	Give the functional isomers of propanone.			
316.	Write down the structural formula of 1-Bromo-2-methyl pentan-3-one.			
317.	What is Tollen's reagent / Fehling solutin / Brady's reagent.			
318.	Aldehyde reacts with hydroxyl amine gives :			
	(a) Oxime (b) hydrazone			
	(c) phenyl hydrozone (d) Ketal			
319.	Arrange the following compounds in inceasing order of their boiling points : ethylalcohol, dimethylether, acetaldehyde, $CH_3 - CH_3$			
320.	Which aldehyde can undergo iodoform test ?			
321.	. Why HCHO does not undergo aldol condensation?			
322.	Name the aldehydes undergoing Cannizzaro's reaction.			
323.	. Arrange HCHO, CH ₃ CHO and CH ₃ COCH ₃ in order of inceasing reactivity towards HCN.			
324.	Write down the IUPAC name of first member of mono and dicarboxylic acid.			
325.	What happens ethanitrile undergoes acidic hydrolysis?			
326.	Prepare acetamide from acetic acid?			
327.	Name the Grignard's reagent from which benzoic acid is prepared.			
328.	How is benzoylchloride prepared ?			
329.	Arrange the following in order of inceasing acidic strength:			
	(i) HCOOH, $ClCH_2$ COOH, CH_3 COOH			
	(ii) CH_3COOH , $(CH_3)_2CHCOOH$, $(CH_3)_3C-OOH$			
	(iii) $ClCH_2$ COOH, $Cl_2CHCOOH$, Cl_3C COOH			
	(iv) ClCH ₂ COOH, CH ₃ CH ₂ COOH, ClCH ₂ CH ₂ COOH, (CH ₃) ₂ CH–COOH, CH ₃ COOH			
330.	Which bond is cleared in the formation of			
	(i) RCOCI (b) RCOONa (c) RCOOR (d) RCONH ₂			
331.	Arrange the following in order of increasing b.p.			
	(i) C_3H_8 (b) C_2H_5OH (c) CH_3CHO (d) CH_3COOH			
332.	Between benzoicacid and acetic acid which one is more soluble in water.			
333.	Arrange the following increasing order of acidic strength i.e. liberating CO_2 from NaHCO ₃ (aq.). HCOOH, benzoic acid, CH_3COOH , Cl_3C COOH.			
- 334. Name the reagent what converts CH_3 -CH=CH-COOH to CH_3 -CH = CH CH_2OH.
- 335. Write down the structural formula of
 - (i) pyrovic acid (b) succinic acid
- 336. Arrange in increasing order of acidic strength :
 - (i) isomers of nitrobenzoic acid
 - (ii) Toluic acids.
 - (iii) Haloacetic acids.
 - (iv) HCOOH CH₃COOH, C₂H₅COOH, C₃H₇COOH.
 - (v) Hydroxy benzoic acid.
- 337. What is oil of bitter almonds?

Unit - XIII

- 338. What is Balz-Schiemann reaction?
- 339. Identify the reagents to prepare nitrogenzene from benzenediazonium chloride.
- 340. Coupling takes place at p-position, if it's occupied substitution occurs at o-position?
- 341. Write the medium when coupling occurs with phenol and aniline respectively.
- 342. How can you prepare iodobenzene from benzene diazonium chloride (BDC)?
- 343. Arrange the following :
 - (i) Increasing order of b.p: C₂H₅OH, (CH₃)₂NH, C₂H₅NH,
 - (ii) Inceasing order solubility in water :

 $C_{6}H_{5}NH_{2}$, $(C_{2}H_{5})_{2}NH$, $C_{2}H_{5}NH_{2}$

- 344. Prepare benzoic and from aniline.
- 345. Name the product formed on oxidation of aniline with chromic acid.
- 346. What is the product formed when benzamide is treated with $LiAlH_4$?
- 347. What are the products formed on (i) sulfonation and (ii) nitration of aniline?
- 348. How can you obtain ethylamine from ethyl isocyanide.
- 349. How to distinguish CH_3CN (Cyanide) from CH_3NC isocyamide on reduction?
- 350. Tertiary butylamine can't be heated with NH_{3} , is it true?
- 351. Arrange the following in increasing order of S_{E} .

$$C_{6}H_{5}CH_{3}, C_{6}H_{5} - N(CH_{3})_{2}, C_{6}H_{5} - \overset{\oplus}{N}(CH_{3})_{3}$$

- 352. Name the reagents to prepare isocyanide from aniline.
- 353. Prepare aniline from benzoic acid.
- 354. What is Gattermann's reaction?
- 355. Why nitroalkanes are used as explosives ?
- 356. Arrange in order of their basic strength :

 $C_{2}H_{5}NH_{2}, C_{6}H_{5}NH_{2}, NH_{3}, C_{6}H_{5}CH_{2}NH_{2} (C_{2}H_{5})_{2}NH$

- 379. What type of medicine chloromphenicol is?
- 380. Name a substance which can be used as antiseptic as well as disinfectant?
- 381. What is tincture of iodine? What for it is used?
- 382. Give an example of cationic detergent and anionic detergent.
- 383. What do you mean by biodegradable detergent?
- 384. What do you mean by antimicrobial drugs?
- 385. Which class of drugs is used in sleeping pills?
- 386. What for medicine is used?
- 387. What is a soft soap ?
- $388. \ \ What \ class \ of \ drug \ is \ ranitidine \ ?$
- $389. \ \ \, To which class of drug barbiturates belong ?$
- 390. What is the important use of equanil in pharmacy?
- 391. What is salvarsan?
- 392. Why is bithional added to soaps?
- 393. Label the hydrophlic and hydrophobic parts in the following :

$$CH_{3} - (CH_{2})_{10} - CH_{2} - OS\overline{O}_{3} \overset{+}{Na}, CH_{3} - (CH_{2})_{15}^{-} \overset{+}{N} (CH_{3})_{3} Br^{-}$$

- 394. Fillers are added to soap and detergents. Explain.
- **

Unit- XIV (Additional Questions as per original syllabus):-

- 395. What are monosaccharides?
- 396. Write two major functions of carbohydrates in plants.
- 397. Name the bases present in RNA and DNA.
- 398. Which elements are generally present in proteins?
- 399. What are hydrolysis product of sucrose?
- 400. Name two carbohydrates used as bio fuels ?
- 401. What causes the disease sickle cell anaemia?
- 402. Which polysaccharide stored in the liver of animals ?
- 403. What are Zwitter ions?
- 404. Identify the mono-and di saccharides of the following : Ribose, 2-deoxyribose, maltose, galactose, fructose and Lactose.
- 405. What happens glucose is treated with (i) bromine water (ii) HI and HNO_3
- 406. What are essential and non-essential amino acids?
- 407. What are vitamines ? Name the fat soluble vitamins ?
- 408. What are different types of RNA found in the cell?
- 409. What do you mean by nucleoside and nucleotide?
- 410. Name the disease caused on deficiency of vita. C and vit. B.
- 411. Identify two possible sequence of amino acids.
- 412. Name two sources of vit. A
- 413. Where does protein synthesis occur?
- 414. Fructose is a Ketose but why does it act as a reducing sugar.
- 415. Name the vitamins synthesised in our body.

* * *

Answers

Group - A(3)

Very Short Questions (1 mark each)

Unit - I

- 1. Simple cubic 52.4% < bcc (68%) < FCC (74%).
- 2. The coordination number of octahedral void is six.
- 3. The coordination number of tetrahedral void is four.
- 4. This is due to metal excess defect forming F-centres i.e, \overline{e} being trapped in anion vacancy.
- 5. NaCl. fcc, CsCl - bcc.
- 6. Schottky defect / vacancy defect.
- 7. Packing efficiency of simple cubic crystal is 52.4%.
- 8. F = Farben Zenter meaning colour. This contains unpair \overline{e} , on exposure to white light the crystal provides / emits different colour. e.g. KCl looks violet (lilac).
- $r_{_{Zn^{2+}}} \! < \, r_{_{S^{2-}}}$, due to smaller size of the cation it occupies the interstital space. Vacancy at 9. cation site (Zn^{2+}) occurs.
- 10. Six Cl⁻¹ octahedrally surround Na⁺ and vice versa.
- 11. The number of nearest neighbours of a particle is called its co-ordination number. e.g. in one dimensional closed packed arrangement, the co-ordination number is two, square close packing in two dimensional the C.N is four, hexagonal closed packing in two dimension the C.N. is six, hcp in three dimension C.N. is 12.
- 12. Molecular solids are of three types.
 - Non polar molecular solids where non-polar molecules are held by weak dispersion i) forces or London forces e.g. $I_{2}(s)$.
 - Polar molecular solid Here the molecules are polar covalent and held by dipole ii) - dipole force. e.g. $SO_2(s)$, $NH_3(s)$
 - H bonded molecular solid: Here the covalent molecules are much polar with iii) Hydrogen atom bonded to F or O or N, the highly electro negative atoms. Such bond i.e. H-atom of one molecule with highly electro negative atom (F/O/N) of the same or different molecule is called hydrogen bond. e.g. Ice.

[or]

The operating forces among the molecules of molecular solid are London / vander Waals forces, dipole-dipole forces (H - bonding).

- 13. Characteristics of molecular solids :
 - These are soft solids i)
 - ii) Non-conductor of electricity.
- ii) Non-conductor of electricity. e.g. I_2 , $H_2O(s)$ In ionic solids the constituting ions are tightly held by strong interionic force of attraction. 14. Due to immobility ions in solid crystalline state, it fails to conduct electricity, however in solution and in molten state these conduct electricity as the ions moves freely.
- 15. Point defect in Crystal. Point defects are the irregulatities or deviation from ideal arrangement around a point or an atom in a crystalline substance.
 - (i) Stochiometric defect Types:
 - (ii) Impurity defect
 - (iii) non stoichiometric defect

16.	16. Ice – H – bonding, diethylether- London force						
	NaCl - Ionic interaction, Silicon carbide - covalent bond.						
17.	FCC - 4 (ii) 2						
18.	Orthorhombic, $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$						
	These are of primitive, bodycentred, face centred and end centred. (four posible unit cells)						
19.	There are seven primitive unit cells among crystals :						
	Cubic, tetragonal, orthorhombic, hexagonal, rhombohedral (or) trigonal, mono-clinic, triclinic.						
20.	Cubic (Primitive, body centred, face centred)						
21.	metallic solids.						
22.	There fourteen types of Bravais lattices out of seven crystal system. These are :						
	Cubic . (Primitive, body cented, face centred) $= 3$						
	Tetragonal (Primitive, body centred) $= 2$						
	Orthorhombic (Primitive, body centred, face $=$ 4						
	centred, end centred)						
	Hexagonal - Primitive $= 1$						
	Rhombohedral - Primitive = 1						
	Monoclinic - Primitive and end centered $= 2$						
	Triclinic - Primitive $= 1$						
23.	. Glass is called super cooled liquid because glass is an amorphous solid with tendency to flow slowly. It does not form a crystalline solid structure as particles in solids do not move but here it moves in supercooling in the process of chilling a liquid below its f.p. without becoming solid. It is an intermediate between solid and liquid.						
24.	24. Graphite.						
25.	Amorphous solids : Polythene, coke, cellophane, teflon.						
26.	It is because there is no long range order in the arrangement in amorphous solids. The constituents are randomly arranged i.e., irregular along all directions. Therefore, thevalue of any physical property would be same along any direction.						
27.	On heating the crystal dislocation of constituents takes place leading to crystal defect.						
	This affects the change phisical properties of crystal, such as conductivity, colour. e.g.						
	ZnO on heating becomes yellow in colour.						
28.	8. Examples of molecular solid. Iodine, Dry ice.						
Unit - II							
29.	9. The principle of RO is widely used in the process of desalination of sea water ie. to get drinking water from sea-water.						
30.	Ideal solutions : Benzene + Toluene, n-hexane + n-heptane						
31.	Non-ideal. (with negative deviation) solute - solvent intraction is greater than solute- solute and solvent - solvent intraction. This is due to H-bonding.						
. CH.							
Cl CH = C							
CH ₂							
C113							

[103]

32. For solutions of fixed concentration, the osmitic pressure (π) is directly proportional to absolute temperature of the solution ie. $\pi \propto T$, $\frac{\pi_1}{\pi_2} = \frac{T_1}{T_2}$, $\pi/atm [...]$ 33. Acetic acid is aqueous medium behaves as a weak electrolyte (i > 1), but in benzene it dimerises (i < 1). $CH_3COOH(aq) \longrightarrow CH_3COO^-(aq.) + H^+(aq)$ $CH_3COOH(Benzene) \Longrightarrow (CH_3COOH)_2$ i.e. $CH_3 - C$ Mole fraction = $\frac{\text{no. of moles of one component}}{\text{Total number of moles}}$ 34. $X_{A} = \frac{n_{A}}{n_{A} + n_{B}}$, Binary solution having n_{A} moles of A and n_{B} moles of B. It has no unit and indepent of temperature as it involves mass of solute and solvent. 35. Mole fraction, molality and mass % 36. 1 m aqueous solution contains one mole of solute in 1 kg of solvent $\left(\frac{1000}{18} = 55.56 \text{ mole}\right)$. mole fraction $= \frac{1}{1+55.56} = 0.0177$. Relative lowering of v.p = $\frac{p^0 - p}{p^0} = \frac{p^0 - 0.8 p^0}{p^0} = 0.2$ 37. 38. Solubility of gas decreases with rise of temperature. Less is vapour pressure of a liquid greater is its boiling point e.g. B.P (water) > B.P. 39. (alcohol) 40. 95.4% ethanol (positive deviation). BP = 351.15 K41. 0.01 m urea = 0.01 m sugar < 0.01 m NaCl < 0.01 m pot.sulfate 42. $\pi = CRT$ i.e. $\pi \propto c$ and $\pi \propto T$ $K_4 \left[\operatorname{Fe}(\operatorname{CN})_6 \right] \operatorname{Aq.}, \qquad \operatorname{Al}_2 \left(\operatorname{SO}_4 \right)_3 \operatorname{Aq.}$ 43. 5 moles 5 moles Molarity - moles/L, molality - moles / kg. of solvant 44. normality-No. of gram equivalent / L (of solution) Strength-gram/litre mole fraction. It is a number (with no unit)

- 45. Camphor has a large K_f value (39.8°) and therefore causes large depression in m.p. with very small amount of solute (naphthalene).
- 46. The b.p. is a temperature at which v.p. of the liquid becomes equal to surrounding pressure, but normal b.p. is the temperature at which vapour pressure is 1 atm. pressure.
- 47. Sea water has lower vapour due to dissolved solute like NaCl, MgCl₂ etc and hence shows higher boiling point.

Charge proton = charge on electron = 1.6×10^{-9} C. 62. 63. Strong electrolytes - acid (HClaq), Base (NaOH aq), Salt (NaCl aq.) Weak electrolyte - acid (CH₃COOH), base (NH₄OH) in aq. solution. 64. $Zn | Zn^{2+}(Aq) : Cu^{2+}(Aq) | Cu$. 65. +0.34 - (-0.76) = 1.1 V66. $Cu |Cu^{2+}(Aq)| |Ag^{+}(aq)| Ag$ 67. Cl^{-1} or NO_3^- of K^+ or NH_4^+ which have similar ionic mobility in solution. 68. $\Lambda_{\rm m} = \Lambda_{\rm m}^0 - (A + B\Lambda_{\rm m}^0)\sqrt{C}$, A and B are Debye - Huckel constants. $= \Lambda_m^0 - b\sqrt{c}$ 69. Specific conductance = cell constant \times conductance In this case cell constant = 1.0 cm^{-1} . 70. (i) 3F (ii) 0.2 F (iii) $6.023 \times 10^{22} = 0.1 \text{ mole}, 0.5 \text{ F}$ (1 mole MnO_4^- need 5F to become Mn^{2+}) 71. 11.2 L at NTP = 0.5 mol = 16 gram oxygen = 2F72. Mg, Zn 73. $-\Delta G^0 = RT \ln K = nF E^0$ $\ln K = \frac{nFE^0}{RT} \implies \log K = \frac{nFE^0}{2.303 RT}$ $\mathbf{K} = \mathbf{e}^{\mathbf{n} \mathbf{F} \mathbf{E}^0 / \mathbf{R} \mathbf{T}}$ 74. $\operatorname{Cu} |\operatorname{Cu}^{2+}(\operatorname{Aq})| |\operatorname{Ag}^{+}(\operatorname{Aq})| |\operatorname{Ag}^{+}(\operatorname{Aq})| |\operatorname{Ag}^{+}(\operatorname{Aq})| |\operatorname{Ag}^{+}(\operatorname{Aq})| |\operatorname{Ag}^{+}(\operatorname{Aq})| |\operatorname{Ag}^{+}(\operatorname{Ag})| |\operatorname{Ag}^{+}(\operatorname{Ag})|$ $E_{cell}^{0} = E_{Ag^{+}/Ag^{-}}^{0} - E_{Cu^{2+}|Cu}^{0} = 0.80V - 0.34V = 0.46V$ 75. A weak electrolyte is a solution in which a small fraction of dissolved solute exists as ions. There lies an equilibrium between unionised part of molecules and ionised part (ions). e.g. $NH_4OH(aq) \implies NH_4^+(Aq) + OH^-(Aq)$ 76. α , the fraction of the molecule that ionised per mole of electrolyte. ' α ' is less for weak electrolytes. The tendency of an electrode to gain or to lose electrons. 77. e.g. $E_{Zn|Zn^{2+}(An)}^{0}$ (oxidation potential) = $-E_{Zn^{2+}|Zn}^{0}$ (reduction potential) 78. Electrolyte is a substance that can conduct electrocity either in molten state or in solution where ions are mobile.

79. Not. $\frac{W_1}{W_2} = \frac{E_1}{E_2} = \frac{Z_1}{Z_2}$ (Faraday's second law of electrolysis) 80. Cell constant $= \frac{\ell}{a}$, ℓ = length between two electrodes a = area of cross section of electrode plate. Highly electro- positive metals like Na, K, Mg, Ca, Al etc can be extracted electrolytically on cathodic reduction from their respective electrolyte. e.g. Na metal from molten NaCl. No. of coulombs = $0.5 \text{ amp} \times 7200 \text{ sec}$ $96500C = 6.023 \times 10^{23} \overline{e}(s) = 1 \text{ mole of } \overline{e}(s)$ $3600 \text{ C} = \frac{6.023 \times 10^{23}}{96500} \times 3600 = 0.225 \times 10^{23} = 2.25 \times 10^{22} \text{ e(s)}$ Anode (oxidation) i.e. the electrode with lower potential 83. cathode (reduction i.e. the electrode with higher electrode potential. In concentration cell, the cell potential is due to difference in conc. of the solution e.g. $Zn | Zn^{2+}(C_1) || Zn^{2+}(C_2) | Zn, C_2 > C_1$ Unit - IV 84. Bimolecular, first order 85. Single step reaction 86. Slope = $-\frac{\text{Ea}}{2.303\text{R}} = -10.7 \times 10^{3}$ $\text{E}_{a} = 2.303 \times 8.314 \times 10.7 \times 10^{3} = 204.87$ 87. $\log \frac{\text{k}_{2}}{\text{k}_{1}} = \frac{\text{Ea}}{2.303 \text{ R}} \cdot \frac{\text{T}_{2} - \text{T}_{1}}{\text{T}_{1} \cdot \text{T}_{2}}$ 88. (i) For zero order reaction no change in rate(ii) The rate becomes 4-times. 89. First order reaction. 90. T 91. $N_2O_5 \longrightarrow N_2O_4 + \frac{1}{2}O_2$ 92. Catalytic decomposition of NH₃, $2 \text{NH}_{3(g)} \xrightarrow{Pt} N_{2(g)} + 3 \text{H}_{2(g)}$ $H_{2(g)} + Cl_{2(g)} \xrightarrow{hv} 2HCl_{(g)}$ The reacting species getting activation energy forms an unstable intermediate called activated complex which readily gives rise to products. 94. $k = \frac{0.693}{t_{1/2}} = \frac{0.693}{60} = \frac{2.303}{t} \log \frac{100}{10}$ i.e. $t = \frac{2.303 \times 60}{0.693} = 199.4$ min. 95. $k = \frac{0.693}{60} = \frac{2.303}{t} \log \frac{100}{1} = \frac{2.303 \times 2}{t}$

[107]

Now, $t = \frac{60 \times 2 \times 2.303}{0.693} = 298.8 \text{ min.}$ 96. $k = \frac{0.693}{60} = \frac{2.303}{t} \log \frac{100}{0.1}$ $t = \frac{2.303 \times 3 \times 60}{0.693} = 598.2 \text{ min.}$ 97. No 98. $R = A e^{-Ea/RT}$. If E_a is negative, = $Ae^{+Ea/RT}$ Expansion of $e^x = 1 + x + \frac{x^2}{2!}$ where $x = \frac{Ea}{RT}$ = $A \cdot \left[1 + \frac{E_a}{RT} \right]$ Neglecting higher powers of x. It shows k > A which is impossible. Hence Ea cann't be negative. For a multistep reaction the slowest step is choosen as rate determining step. The rate of 99. this step is the rate of the reaction. 100. $k = \frac{0.693}{t_{1/2}} = \frac{0.693}{10 \min} = 0.0693 \min^{-1} = 6.93 \times 10^{-2} \min^{-1}$ 101. Ea, is the excess energy required by the reactants to form the activated complex i.e. to surpass the potential barrier leading to product. i.e. $E_a = E_{th} - E_r$ $E_{th} = E_r + E_a$ E_{th} = threshold energy i.e. energy possessed by the peak of barrier / activated complex. 102. Half life period $(t_{0.5})$. It is the time required to halve the initial concentration of the reactant, [A]₀ Relationship with [A]: $t_{0.5} \propto \frac{1}{[A]^{n-1}}$ where n = order of reaction. 103. The number of collisions per second per unit volume of the reaction mixture is known as collision frequency (Z). 104. The reaction where order of reaction is one but molecularity is two is called pseudo first order reaction. e.g. $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$ rate of reaction = k $[CH_3COOC_2H_5]^1$ $[H_2O]^0$ Due to excess of reactant, H₂O the rate is independent of [H₂O] i.e. it is zero order with respect to water. 105. $-\frac{1}{2}\frac{d[N_2O_5]}{dt} = +\frac{1}{4}[NO_2] = \frac{d[O_2]}{dt}$ $[N_2O_5] \propto P_{N_2O_5}$ i.e. partial pressure of $N_2O_5(g)$.

106. Rate = $k[x]^2$. The rate will increase by 9 times. 107. Temperature co-efficient (n) is the ratio of rate constants at (T+10] K and T(K). Rate constant at (T+10)K i.e. 308k Rate constant of (T = 298 K say)For most of the reaction 2 < n < 3. 108. At $T = \infty$, $K = Ae^{-Ea/RT} = A$. Rate constant is equal to collision frequency i.e. every collision results into a chemical reaction which can't be true. At $T = \infty$, 'k' is not feasible. No. 109. It is a fractional order reaction. In an elementary process order equals to its molecularities and must have integral values. No. Unit - V 110. The phenomenon of higher concentration of molecular species (gas/liquid) on the surface of solid than in the bulk is known as adsorption. It is a surface phenomenon e.g. water vapour adheres to the surface of silica gel. 111. It is the amount of heat evolved when 1 mole of gas/liquid (adsorbate) adsorbed on the surface of solid (adsorbent) i.e. $\Delta_{ads} H = negative$ 112. In physical adsorption the adsobent and adsorbate are held by weak van-der Waals force. 113. Desorption (increasing temperature / decreasing pressure) 114. Animal charcoal is very good adsorbent, it removes the colouring matter (impurities) from the sugar making it colourless by surface action. 115. Colloid particle size $1 \text{ nm}(10^3 \text{ pm}) - 1000 \text{ nm}$ while pore size of filter paper is bigger than this & hence can pass through the pores of filter paper completely. 116. Colloid particle size $1 \text{ nm} (10^3 \text{ pm}) - 1000 \text{ nm} (=10^6 \text{ pm})$. Crystalloid $< 10^3 \text{ pm}$ (1 nm)117. Milk (o/w), cold cream (w/o). 118. Colloid particles are either positively or negatively charged. When electrolyte is added, the cation part neuralises the -vely charged colloid. Once changes are lost Brownian movement ceases & particle settled / coagulated ? e.g.potash alum is used in the settling tank during water treatment. 119. Δ_{ads} H = negative i.e. the adsorption process is exothermic, to make it spontaneous. 120. The turbid water contain fine colloidal clay particles which are -vely charged i.e. it's a negative sol. when treated with alum (K, SO₄. Al₂(SO₄)₃, 24H₂O), Al³⁺ cations neutralise the charge present in dispersed phase. The stability of colloidal solution (turbid water) fails & coagulation of clay particles takes place having clear water (dispersion medium) 121. Extent of adsorption = $\frac{x}{m}$ i.e. mass of adsorbate (x) per gram of an adsorbent (m). In case of physical adsorption, increase of temperature decreases the $\frac{x}{m}$ value while increase of pressure inceases the $\frac{x}{m}$ value.

 $\frac{x}{m} \propto p^{\frac{1}{n}} (n = \text{whole number})$

For chemisorption $\frac{x}{m}$ increases with rise of temperature initially.

122. Positive adsorption : If the concentration of adsorbate is more on the surface as compared to its concentration in the bulk phase then it's a called positive adsorption. Negative adsorption : If the concentration of the adsorbate is less than its concentration in the bulk, then it is called negative adsorption. e.g. dilute solution of KCl is shaken with blood charcoal.

123. Catalyst (heterogeneous) taken in finely powered form with greater surface area to which large number of adsorbate molecules (reactants) adhere to.

- 124. It is the millimoles of an electrolyte that must be added to 1L of a colloidal solution for complete coagulation. Smaller is the flocculation value (FV) greater is the coagulating power.
- 125. 5 ml of $1 \text{m KCl} \equiv 5$ millimoles

100 ml of sol need 5 millimoles

1000 ml (1 L) sol need 50 millimoles = FV of KCl

- 126. Dilution test : Milk is diluted even with small volume of water i.e. the dispersion medium of milk must be water. Thus, it's an o/w emulsion.
- 127. Colloidal solution consists of two phases : dispersion medium, dispersion phase e.g. milk power (phase) is dispersed in water (medium). As it consists of two phases it's heterogeneous in nature.
- 128. It is a heterogeneous solution which contains particles of size 1–1000 nm. e.g. milk.
- 129. The smoke is colloidal in nature. When viewed at angle to the source of light it appears blue on account of Tyndall effect.
- 130. Coagulation takes place because the-sols will mutually neutralise their charges.
- 131. It is colloidal solution of cellulose nitrate in ethylalcohol.
- 132. Solid (liquid dispersed in solid)
- 133. 4 ml of 1M NaCl necessary to cogulate 1 L of arsenic sulfide. The amount in mili moles of NaCl= $_{4\times1}$ =4 milimoles. Flocculation value of NaCl=4.

135. CO acts a poison for the catalyst. Finely divided iron reduces the catalytic activity & hence the production of NH₃.

Unit - VI

- 136. Na, Mg
- 137. Dolomite : Ca CO₃.MgCO₃
- 138. Carbon (Coke)
- 139. Electrolytic refining
- 140. Brass Cu (90%) + Zn(10%); Bronze Cu(90%) Sn(10%)
- 141. German silver Cu(60%), Ni (15%), Zn(25%)

^{134.} Zymase.

- 142. Silicon steel : Fe (85%), Si (15%) : Ferrosilicon Chrome steel : Fe (33%), Cr (67%) : Ferrochrome
- 143. Zinc blende (ZnS), Green vitriol. (CuSO₄.5H₂O)
- 144. Calamine : $ZnCO_3(s) \xrightarrow{Caleination} ZnO_{(s)} + CO_2 \uparrow$
- 145. Flux is a substance added at the time of smelting to remove the impurity from the concentrated ore. If impurity is basic, acidic flux is added & vice versa.Basic impurity + Acidic flux = slag

$$CaO_{(s)} + SiO_2(s) \longrightarrow CaSiO_3(s)$$

- 146. Acidic flux : SiO_2 , P_2O_5
- 147. F
- 148. Slagging is a process where the impurities are removed from the concentrated ore during smelting. It is lighter than molten metal. It is removed first.

Impurity + flux \longrightarrow slag.

149. Here reducing agent is not added from outside, in furnace it's itself formed.Example. Bassemerisation : Copper sulfide is partially oxidised to cuprous oxide which reacts with remaining copper sulfide to form Cu and SO₂.

 $2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$

$$Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2(g)$$

Blister Copper

150. Fe- Haematile (Fe_2O_3) Al - Bauxite $(Al_2O_3 - 2H_2O)$

Cu - Copper pyrites $(Cu \text{ Fe } S_2)$

- 151. Levigation : It is gravity separation method to concentrate heavy oxides ores of lead, tin, iron etc. The lighter gangue particles are washed away.
- 152. Liquation : The metallurgical process (refining) involves heating the ore until the metal with a lower melting point is separated from the ore with higher melting point. It is carried out in sloping hearth of a furnance. For example. Pb, Sn, Sb, Bi and Hg.
- 153. F (Magnetite is an ore of iron)
- 154. Manganin (Cu-86%, Mn 12%, Ni 2%) is an alloy of copper containing lowest percentage of Ni.
- 155. Matte : During smelting of roasted ore of copper with coke and silica in blast furnace ferrous sulfide changes to FeO which with SiO₂(flux) removed as FeSiO₃ (slag).

Part of FeS melts with Cuprous sulfide at high tempera-

ture giving rise to matte containing 50% copper. (Matte = Copper + FeS + Cu_2S) 156. Sulfide ore

- 157. \rightarrow Pyo-metallurgy : The process of converting a metal oxide into metallic form upon strong heating with a suitable reducing agent is known as pyometalurgy. e.g. iron
 - → Electro meallurgy: The process of cathodic reduction molten salt of highly reactive (electro positive) is called electrometallurgy. e.g. electrolysis of molten NaCl to extract sodium.

→ Hydrometallurgy : The process of converting the impure metal present in an ore into suitable complex & then recovering the pure metal from the complex by treating with a more electropositive metal, a stronger reducing agent is known as hydrometallurgy.

Silver
$$\xrightarrow{\text{NaCN}}$$
 Na $\left[Ag(CN)_{2} \right] \xrightarrow{Zn} Ag$

158. Copper matte contains Cu₂O and Fe O(impurity). In the Bessemer converter, silica present as lining acts as a flux which combines with FeO to form iron silicate as slag :

 $FeO + SiO_2 \longrightarrow FeSiO_3$.

- 159. They differ by their C-content. Carbon content in pig iron is nearly 4% while in cast iron it's 3%.
- 160. $Cu_2O < FeO < ZnO < MgO$ (More negative is the value of $\Delta_f G^0$ more is the stability and better as a reducing metal)

Unit - VII

161. Group-15 Bond angle decreases from NH_3 to BiH_3 .

Group - $16 H_2O$ to H_2Te with decrease of electronegativity.

162. Pentoxides are more acidic than trioxide, the acidic character decreases, from top to bottom with decrease of electronegativity. More is the electronegativity more is the electron accepting tendency electron acceptors are acids (Lewis).

$$N_2O_5 > P_2O_5 > As_2O_5 > Sb_2O_5 > Bi_2O_5$$

 $N_2O_5 > N_2O_3$ etc.

163. Reducing nature increases form NH₃ to BiH₃ with decrease M-H bond strength and increase of M-H bond length.

 $NH_3 - PH_3 < AsH_3 < SbH_3 < BiH_3$

 $BiH_3 \longrightarrow Bi + 3(H)$

Reducing nature depends on ease of release of 'H'

$$\begin{array}{rcl} Ar &> Ne > He > Kr > Xe > Rn(traces) \\ \hline 164. & (93.4\,ppm) & (0.09\,ppm) \end{array}$$

165. Uses of XeF_2 (i) Fluorinating agent (ii) Xe can be prepared $XeF_2 + H_2 \longrightarrow Xe+2HF$

166. It undergoes oxidation to HNO₃ and reduced to NO (nitric oxide)

$$3H \overset{+3}{N}O_2 \longrightarrow H \overset{+5}{N}O_3 + 2 \overset{+2}{N}O + H_2O$$

- 167. Dinitrogen tetroxide (N_2O_4) is used as rocket fuel.
- 168. Carbogen is a mixture of oxygen and carbondioxide. It is given to the pneumonia patients and patients of carbon monoxide poisoning for artificial respiration.

169.
$$\text{HClO} < \text{HClO}_2 < \text{HClO}_3 < \text{HClO}_4$$
. Then $\text{HClO}_4 \rightarrow \text{H}^+ + \text{ClO}_4^-$ (Conjugate base more stable) the stability of conjugate base. $\text{ClO}^- < \text{ClO}_2^- < \text{ClO}_3^- < \text{ClO}_4^-$. ClO_4^- is maximum stable because -ve charge dispersed by four electronegative oxygen atoms.

Thus $HClO_4$ has maximum H⁺ losing tendency i.e. $HClO_4$ is strongest acid and HClO is least acidic.

Thus,
$$H_{C}^{+7}IO_{4} > H_{C}^{+5}IO_{3} > H_{C}^{+3}IO_{2} > H_{C}^{+1}IO$$

Higher is the positive O.S. greater is the acidic nature (more electron accepting tendency).

- 170 .'NO' has odd number of electrons (7+8=15) are due to presence of unpair e^- in antibonding orbital, it's paramagnetic in gaseous state. However, in liquid and solid states, the unpaired $e^{-}(s)$ are involved in the formation of loose dimer. In the absence of any unpair e. It is diamagnetic in nature:
- 171. No. of polar -O-H group determines the proton donating tendency and acidic nature

(One polar-OH group) (Two polar-OH group)

172. $Na_2O_2 + 2H_2O \rightarrow 2NaOH + H_2O_2$ On hydrolysis peroxide is formed, hence Na_2O_2 is peroxide further O.N. of peroxide, O_2^{2-} where oxygen has -1 O.S.

173. Pyrosulfuric acid : $H_2S_2O_7$, Pyrophosphoric acid (diphosphoric acid $H_4P_2O_7$)

174. (i) Charring of sugar takes place due to dehydration. Only sugar charcoal is left behind. $C_{12}H_{22}O_{11} \xrightarrow{\text{conc.H}_2SO_4} 12C + 11H_2O$

(ii) Brown gas evolves due to formation of
$$Br_2$$
 (on oxidation of Br_2

Here sulfuric acid acts as oxidizing agent.

$$\mathrm{SO}_4^{2-} + 4\mathrm{H}^+ + 2\mathrm{e}^- \rightarrow \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O}$$

$$2B\overline{r} \rightarrow Br_2 + 2e^-$$

When copper turning are heated with conc. H_2SO_4 , colourless SO_2 evolves on (iii) reduction of SO_4^{2-} .

$$SO_4^{2-} + 4H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$$

$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

Yellow powder of sulfur (S_o) disappears liberating a colourless with pungent smelling (iv) $gas(SO_2)$

 $\left[4\mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+2\mathrm{e}^{-}\longrightarrow\mathrm{SO}_{2}+2\mathrm{H}_{2}\mathrm{O}\right]\times16\mathrm{e}^{-}$

$$\frac{16H_1O + S_8 \rightarrow 8SO_2 + 32H^2 + 32e^2}{32H^2 + 16SO_4^{2-2} + S_8 \longrightarrow 24SO_2 + 16H_2O}$$
(v) Colourless HCl₁₆ evolves out.
KCl + H₂SO₄ \longrightarrow KHSO₄ + HCl \uparrow
175. Nitrogen does not have 'd' obilal can't co-ordinate with H₁, \overleftarrow{O} : molecule. In case PF₃,
P-F bond is stronger than P-O bond. Hence 'P' of PF₁ fails to interact with 'O' of H₂O.
176. 2HNO₃ $\xrightarrow{-H_2O} \rightarrow N_2O_3$ (Anhydride of HNO₃)
2H₁PO₄ $\xrightarrow{-H_2O} \rightarrow P_2O_3$ (anhydride of H₃PO₄)
177. 3Cu + 8HNO₃ \longrightarrow 3Cu (NO₃)₂ + 4H₂O + 2NO
 $2H\dot{N}O_3 \longrightarrow H_2O + 2\dot{N}O_2 + 3(O)$
 $3\times [Cu + O + 2HNO_3 \longrightarrow Cu(NO_3)_2 + H_2O]$
(a) $[4H^2 + NO_1^2 + 3e^2 \longrightarrow NO + 2H_2O] \times 2$
 $\frac{[Cu \longrightarrow Cu^{2+} + 2e^2] \times 3}{8H^2 + 2NO_1^2 + 3Cu \longrightarrow 3Cu^{2+} + 2NO + 4H_2O}$
i.e. 8HNO₃ + 3Cu \longrightarrow 3Cu (NO₃)₂ + 2NO + 4H₂O
178. NH₄Cl₁₀₀ on heating with quick lime NH₃₆₀ is liberated. Lab. Method:
2NH₄Cl + CaO \rightarrow 2NH₃ \uparrow + CaCl₂ + H₂O
179. When potassium nitrate in treated with cone. H₂SO₄, nitrie acid is formed.
KNO₃ + H₂SO₄ \rightarrow KHSO₄ + HNO₃
180. N₂₁₆₁ + 3H₂₂₍₂₎ \longrightarrow 2NH₃₆₂ is ducklime (CaO)
183. P_{2O₅} is an acid anhydride which reacts with NH₃ (base) to form ammonium
phosphate salt.
P_{2O₅} + 3H₂O \rightarrow 2H₃₀ \rightarrow 2(NH₄)₃PO₄
184. In the Ostward proceine to synthesize HNO₃, Pt-Catalyst is used to oxidize ammonia.

 $2NH_3 + \frac{5}{2}O_2 \xrightarrow{Pt} 2NO + 3H_2O$ $2NO + \frac{3}{2}O_2 + H_2O \longrightarrow 2HNO_3$ 185. Thermal decomposition of sodium azide gives dinitrogen. $2NaN_3 \xrightarrow{\Lambda} 2Na + 3N_2 \uparrow$ 186. On partial and complete neutralization, three types of salts are formed. $H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O$ 1.1acid salt $H_3PO_4 + 2NaOH \longrightarrow Na_2HPO_4 + 2H_2O$ 1:2acid salt $H_3PO_4 + 3NaOH \longrightarrow Na_3PO_4 + 2H_2O$ normal salt 187. On heating H_3PO_4 , phosphoric acid and phosphine are formed $4H_3PO_3 \longrightarrow 3H_3PO_4 + PH_3$ 188. H₃PO₂ (hypophosphorous acid) is a mono basic acid with one-OH group bonded to 'P'with O.N.+1. Structure: Here, there are two P-H bonds. Due to greater bond length it can release 'H'. The compound that can give 'H' is a reducing agent. Further +1 O.N. can increase to +5 i.e. it is oxidized. The substance getting oxidized is a reducing gent. 189. Pt does not react with Oxygen directly. 190. $Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$ (Base) (acid) (a) $\operatorname{Al}_2O_{3(s)} + 6\operatorname{HCl} + 9\operatorname{H}_2O \longrightarrow 2\left[\operatorname{Al}(\operatorname{H}_2O)_6\right]_{aq}^{3+} + 6\operatorname{Cl}^-(aq)$

$$Al_2O_3(s) + 6NaOH + 3H_2O(1) \longrightarrow 2Na_3[Al(OH)_6]aq.$$

Sodium hexhaydroxido aluminate (III)

This is the reason way Al₂O₃ is an amphoteric oxide.

191. Bond angle = 117°, Bond length = identical, 128 pm.

 $0 \xrightarrow{0^+} 0^- \longleftrightarrow 0 \xrightarrow{0^+} 0 \equiv 0 \xrightarrow{0^+} 0$

192. In vapour state sulfur partly exists as S_2 molecule which has two unpaired electrons n

the antibonding π^* orbital, like O₂ & hence exhibit paramagnetism. 194. SO_2 in a reducing agent. If reducing Fe^{3+} to Fe^{2+} ions $SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^ \frac{2Fe^{3+} + 2e^{-} \longrightarrow 2Fe^{2+}}{SO_2 + 2H_2O + 2Fe^{3+} \longrightarrow SO_4^{2-} + 4H^+ + 2Fe^{2+}}$ 194. (i) Oxidizing agent: $H_2SO_4 \rightarrow H_2O + SO_2 + [O]$ Dehydrating agent: Charring sugar $C_{12}H_{22}O_{11} \xrightarrow{conc.}{H_2SO_4} 11H_2O + 12C \longrightarrow$ (ii) Sulphonating agent: (iii) $(O) \xrightarrow{\text{conc. H}_2SO_4} (O)$ $MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2$ 195. (i) (ii) $2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2$ $[8H^- + MnO_4^- + 5e^- \longrightarrow Mn^{2+} + 4H_2O] \times 2$ $[2Cl^{-} \longrightarrow Cl_2 + 2e^{-}] \times 5$ $CO + Cl_2 \xrightarrow{C(active)} COCl_2$ 196. Phosgene: $S_8 + 4Cl_2 \xrightarrow{\Delta} 4S_2Cl_2(l)$ Mustard gas: $CH_2 = CH_2 + S_2Cl_2 \longrightarrow Cl - CH_2 - CH_2 - S - CH_2 - CH_2Cl + S$ 197. $\frac{\text{Cl}_{2(g)}}{\text{SO}_{2(g)}}$ dried on passing through conc. H₂SO₄. 198. $SO_2 + 2Mg \longrightarrow 2MgO + S$. It liberates Iodine from HI $4HI + SO_2 \longrightarrow 2H_2O + 2I_2 + S$ $SO_2 \longrightarrow S + 2[O]$ $\begin{bmatrix} 2HI + O \longrightarrow H_2O + I_2 \end{bmatrix} \times 2$ 199. H₂S is a dibasic acid, forming hydrogen sulfide ($H\overline{S}$) and sulfide (S^{2-}). 200. The strip turns black due to formation of PbS. $(CH_3COO)_2 Pb + H_2S \longrightarrow PbS \downarrow +2CH_3COOH$ 201. Allotropic forms of sulfur Rhombic sulfur $(\alpha - \text{sulfur}), S_8$. (i) Monochlinic sulfur $(\beta - Sulfur), S_{s}$. (ii) 202. $1s^2 2s^2 2p^6 3s^2 3p^4 \implies S$ 203. $\text{TeO}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{TeO}_3 + \text{H}_2\text{O}$ (sodium tellurite)

 $2\text{TeO}_2 + 2\text{HCl} \rightarrow \text{Te}_2\text{O}_3\text{Cl}_2 + \text{H}_2\text{O}$

- 204. Due to high electronegativety value of F (4.1). it forms short H-bonding i.e. HF molecules are much associated, less volatile i.e. with greater inter molecular force of attraction.
 205. H. F. CHCL CHERT CHURT CH
- 205. H-F < HCl < HBr < HI
- 206. F(Due to smaller size and high electronegativity)
- 207. F $(1s^2 2s^2 2p^5)$ having -1, oxidation number only due to high electronegativety value (4.1).

Unit - VIII

208.
$$_{24}$$
Cr $1s^2 2s^2 2p^6 3s^3 3p^6 3d^5 4s^1$, Cr^{3+} [Ne] $2s^2 3p^6 3d^3$

$$_{19}$$
Cu $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$, Cu²⁺[Ne] $3s^2 3p^6 3d^9$

- 209. Zn, Cd, Hg due to presence $18\overline{e}s$ in their penultimate shell along with ns² electrons in nth shell.
- 210. In the presence of moist air, a layer of basic copper carbonate (green) is formed on the surface and gets corroded.

$$2Cu + O_2 + H_2O + CO_2 \longrightarrow CuCO_3.Cu(OH)_2$$

- 211. $Fe^{2+}(Aq)$ green, $Fe^{3+}(Aq)$ yellow.
- 212. La³⁺
- 213. green vitriol, $FeSO_4$.7H₂O (on crystallisation)
- 214. General configuration of d-block is $(n-1)d^{1-10} ns^{0-2}$ and $_{30}Zn = 3s^2 3p^6 3d^{10} 4s^2$
- 215. Actinoids are f-block, inner transition elements with general electronic configuration $(n-2) s^2 p^6 d^{10} f^{1-14} (n-1) s^2 p^6 d^{0(or)1} ns^2$
- 216. Low alloys and high alloys of steel, depending on % of alloying elements (1-50%). e.g. Ferro – silicon, Ferro – vanadium (low alloys)
- 217. Wrought (pure iron), pig iron (impure form)
- 218. Reverberatory furance.
- 219. SO₂
- 220. (FeCl₃)₂ in vapour phase. Normally as FeCl₃. 6H₂O
- 221. Transition metals have more number of unpaired $\overline{e}(s)$ in their valenceshell for which they are able to from strong metallic bond. The strength of bond is responsible for its hardness.
- 222. Sc
- 223. Fe₂O₃
- 224. Metal is heated to higher temperature and then cooled slowly, by such process the metal becomes soft.

225.	Triad elements	group	8,	9,	10
		Irontriad	Fe	Co	Ni
		Pd-triad	Ru	Rh	Pd
		Pt. triad	Os	Ir	Pt
226. N	ickel				

227. +3

228. Mn +2(MnO₂), +3(Mn₂O₃)+4(MnO₂), +7(Mn₂O₇) 229. Os, e.g. OsO_4 (+8) and IrO_4 230. $Cu^{2+}(3d^9), Ni^{2+}(3d^8)$ 231. $Hg^{+}(5d^{10}6s^{1})$, due to dimagnetic behaviour of mercurous compounds it's written as Hg_2^{2+} indicating absence of spin free electron. 232. Leser energy differs between 5f and 6d orbitals than between 4f and 5d orbitals in lanthanides. 5f orbital extend further from nucleus than 4f orbital. Its O.S. varies from +3 to +6 (5f, 6d, 7s levels having comparable energy). 233. Metals with highest oxidation can reduce to lower O.S. & Metals undergoing easy reduction can use as better oxidising agent. 234. Fe³⁺ (3d⁵), due to half filled d-orbitals it's is most stable ion (with stable electronic configuration). Further its can easily be hydrolysed with greater $\Delta_{hyd}H(-ve)$. 235. +7 (Np and Pu) 236. $Cu(3d^{10} 4s^1)$ $Cu^+(3d^{10})$, no unpair \overline{e} & hence colourless $Cu^{2+}(3d^9)$ with unpair \overline{e} looks blue in aq. solution. 237. Due to lanthaxide contraction transition elements of 2nd and 3rd have comparable atomic / ionic size & following almost identical chemical properties. 238. ${}^{r}La^{3+} > {}^{r}Lu^{3+}$ due to lanthamide contraction. Thus, La(OH)₃ is more ionic than $Lu(OH)_{3}$ i.e. $La(OH)_{2}$ is more basic (alkaline). 239. $MnO_4^- > Cr_2O_7^{2-} > VO_2^+$ (reduced states are more stable) Unit - IX 240. $e_n = NH_2 - CH_2 - CH_2 - NH_2$, ethane-1, 2-diamine a bidentate chelating ligand with two donor sites, to form co-ordinate covalent bond with metal or metal ion. 241. K_4 [Fe(CN)₆] 242. $\overline{OOCH_2C}$ $N-CH_2-CH_2-N < CH_2COO^-$ Ethylene diamine tetraacetate (EDTA)⁴⁻ ion. It is a hexaentate ligand. 243. $Cr^{3+}(3d^3)$, $Co^{3+}(3d^6)$, $Fe^{3+}(3d^5)$ n=3 n=4 n-5 (n n=5 (n = no. of unpair \overline{e}) 244. Hexaammine chromium (III) ion Hexafluorido cobaltate (III) ion, Hexacyanidoferrate (III)) ion 245. $\Delta_t = \frac{4}{9}\Delta_0$, conequently, the orbital splitting energies are not sufficiently large for forcing pairing and, therefore, low spin configuration are rarely observed. 246. Pentaammine nitrocoalt (III) nitrate

[119]

 $d^6 = t_{2\sigma}^4 eg^2$ (Paramagnetic) $\Delta_0(CN^-) > \Delta_0(H_2O)$ Due difference in absorption causes difference frequency, the complementary emitting frequency differs imparting different colour. Emitting frequency (CN⁻) complex is less than that in (H₂O) complex. Former one is yellow while other one is violet. Violet color has higher frequency than yellow. 256. Ambident ligand species has more than one donor site e.g. CN⁻, SCN⁻ 257. Denticity of a ligand is the number of donor groups in a single molecule / ion that bind to central atom/ion in a coordination complex. e.g.: NH_3 monodentate, $NH_2 - CH_2 - CH_2 - N$ bidentate 258. There are five degenerate d-orbitals, dxy, d_{xy} , d_{zx} , $d_{x^2-y^2}$ and d_{z^2} on the basis of their orientations. 259. The ligands may be arranged in increasing order of the field strength produced by them in a series known as spectrochemical series. $\mathrm{I}^- < \mathrm{Br}^- < \mathrm{SCN}^- < \mathrm{Cl}^-\mathrm{H}_2\mathrm{O} < \mathrm{NCS}^- < \mathrm{edt}^{4-}\mathrm{a} < \mathrm{NH}_3 < \mathrm{en} < \mathrm{CN} < \mathrm{CO}$ 260. Hard water contains Ca^{2+} , Mg^{2+} & never gives good lather with soap. Water can be softened with EDTA that form Ca and Mg chelating complex. 261. Gold dissolves in KCN in presence of oxygen (surrounding air) and water forming a complex : $4 \operatorname{Au} + 8 \operatorname{KCN} + O_2 + 2 \operatorname{H}_2 O \longrightarrow 4 \operatorname{K} \left[\operatorname{Au} (\operatorname{CN})_2 \right] + 4 \operatorname{KOH}$ Pot. dicyanidoaurate (I) This solution is treated with Zn (more electro +ve) to displace less electropositive, Au from its solution. $2K \left[Au(CN)_{2}\right] + Zn \longrightarrow 2Au + K_{2} \left[Zn(CN)_{4}\right]$ 262. Sulfide ore gets soluble in NaCN in the process of leaching forming a soluble complex. $Ag_2S + 4NaCN \longrightarrow 2Na[Ag(CN)_2] + Na_2S$ Sodiumdicyanidoargentate (I) 263. $\left[\text{Fe}(\text{CN})_6 \right]^{4-}$ Fe (II), 3d⁶ 4s⁰ ↑ 3d 4s4p $\uparrow\downarrow$ | $\uparrow\downarrow$ | ↑↓ •• • • •• $"(\Rightarrow C\overline{N})$ d^2sp^3 Shape: Octahedral Magnetic property : diamagnetic

264.
$$K_2^{2+} \left[Ru^{-4} (OH)_4^{-4} CI_2^{-2} \right]^{2-}$$
, C.N. of Ru=six
O.N. of Ru = Four (tetravalent)
265. $\left[Fe^{3+} (C_2O_4)_3^{-6} \right]^{3-}$ C.N of Fe³⁺ = six
O.N. = +3 (three)
Unit - X
266. (i) CH₂I
(ii) CH₂-CH₂-CH₂Br
(iv) CH₃-CH₂-CH₂Br
(v) CH₃-CH₂-CH₂Br
(v) CH₃-CH₂-CH₂Br
(v) CH₃-CH₂-CH₂Br
(v) CH₃-CH₂-CH₂Cl (1⁹)
(iv) (C₈H₃)₂CH - Br
(v) CH₂ = CH - CH₂Cl
268. CH₃ - CH₂ - CH₂ Br (1⁹)
(iv) (C₈H₃)₂CH - Br
(v) CH₃ = CH - CH₂Cl
268. CH₃ - CH₂ - CH₂ Br (1⁹)
(i) 1-Bromobutane
CH₃ - CH - CH₂ Br (1⁹)
(ii) 1-Bromo-2-methyl propane
CH₃
(CH₃ - CH - CH₂ - CH₃ (2⁹)
2-Bromobutane
Br
CH₃ - CH - CH₂ - CH₃ (2⁹)
2-Bromobutane
269. (i) OII_{3} -CH₂-CH₂OH + KI + H₃PO₄ \longrightarrow CH₃CH₂I + KH₂PO₄ + H₂O
(ii) 3 $(CH_3 - CH - CH_2 - CH_3) + 3 Br_2 + 2P \longrightarrow 3 (CH_3CH - CH_3) + H_3PO_3$
271. (i) CH₃ - CH - CH₂ - CH₃ (2-CH₂OH - CH₃) + H_3PO₃
CH₃ - CH - CH₂ - CH₃ - CH₂ - CH₃ (2-CH₃Obutane (1⁹)
CH₃ - CH - CH₂ - CH₂ - CH₂ - CH₂Cl, 1-chlorobutane (1⁹)
CH₃ - CH - CH₂ - CH₃ - CH₂ - CH₃ (2-Chlorobutane (1⁹)
CH₃ - CH - CH₂ - CH₃ - CH₃ (2-Chlorobutane (1⁹)
CH₃ - CH - CH₂ - CH₃ (2-Chlorobutane (1⁹)
CH₃ - CH - CH₂ - CH₃ (2-Chlorobutane (1⁹)

Isobutane :
$$CH_{3}-CH-CH_{3} \xrightarrow{-CL_{2}/h_{2}} CH_{3}-CH-CH_{2}CI (1^{9}) + CH_{3} CH$$

HBr in presence of benzoylperoxide (Kharasch effect) 277. (i) (ii) AgCN (iii) AgNO₂, Sn-HCl/ Δ (iv) CuCN / KCN, SnCl₂ + HCl (Stephen's reaction) (v) $HC \equiv C Na$ $C = C \begin{pmatrix} H \\ - \end{pmatrix}, \quad H \end{pmatrix} = C \begin{pmatrix} - \\ - \end{pmatrix} C = C \begin{pmatrix} - \\ - \end{pmatrix} C$ H, 278. Br trans-1, 2- dibromoithene cis, Trans-isomer is much more symmetrical and fit tightly in the crystal lattice, orderly arranged and has higher m.p. CiS - isomer has higher b.p. due to higher polarity experiencing greater dipole-dipole force. Η 279. $CH_3 - {}^*C - CH_2 - CH_3$, 2–Bromobutane, containing chiral C.atom. Br CH, 280. $CH_3 - C - CH_2Br$ (1-Bromo-2, 2-dimethyl propane) CH₃ The hydrocarbon is 2, 2–methyl propane (C_5H_{12}) $(C_5 H_{10})$. Cyclopentane $\xrightarrow{Cl_2}$ Cl(Chlorocyclopentane) $\begin{array}{c} & & & \\ &$ 281. 282. (i) Cl (ii) $CH_3 - \overset{i}{C} - CH_2 - CH_3 \xrightarrow{c_{2H_5} \circ} CH_3 - \overset{i}{C} = CH - CH_3$ ĊH₃ ĊH, CH, $\begin{vmatrix} \text{CH}_{3} & \text{CH}_{3} \\ | 283. \text{ (i)} & \text{CH}_{3} - \overset{|}{\text{C}} - \text{Br} & \xrightarrow{\text{alc. KOH}} & \text{CH}_{3} - \overset{|}{\underset{\text{CH}_{3}} \\ | \\ \text{CH}_{3}} & \text{CH}_{3} - \overset{|}{\underset{\text{CH}_{3}} \\ | \\ \text{CH}_{3}} \end{matrix}$ CH₃ (ii) $CH_3 - CHBr - CH_3 \xrightarrow{KOH(aq)} CH_3 - CH - CH_3$ ÓН

[123]

(ii)
$$CH_{3} - CH_{2} - Br \frac{K CN}{Ak} O CH_{3} - CH_{2} - CN$$

(iv) $C_{n}H_{3}ONa + C_{2}H_{3}CI \longrightarrow C_{n}H_{3}OC_{2}H_{3}(Phenetole)$
(Phenoxide a weaker base fails to eliminate)
The reaction where ether is formed from 1°-haloalkane is known as Williamson's
synthesis.
(v) $CH_{3} - CH = C < CH_{3} + HBr \longrightarrow CH_{3} - CH_{2} - CH_{2} - CH_{3}$
 $CH_{3} - CH = C < CH_{2} + HBr \longrightarrow CH_{3} - CH_{2} - CH_{2} - CH_{3}$
 $CH_{3} - CH - CH_{2}Br \xrightarrow{Nadyether} CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{3}$
 $CH_{3} - CH - CH_{2}Br \xrightarrow{Nadyether} CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{3}$
 $CH_{3} - CH_{2}Br \xrightarrow{Nadyether} CH_{3} - CH - CH_{2} - CH_{2} - CH_{3}$
 $CH_{3} - CH_{2}Br \xrightarrow{Nadyether} CH_{3} - CH_{2} - CH_{2} - CH_{3}$
 $CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{CH_{3} - CH_{3} - CH_{3}}$
 $CH_{3} - CH_{2} - CH_{3} \xrightarrow{Nadyether} CH_{3} - CH_{3} - CH_{2} - CH_{3}$
 $CH_{3} - CH_{2} - CH_{3} \xrightarrow{Nadyether} CH_{3} - CH_{2} - CH_{2} - CH_{3}$
 $CH_{3} - CH_{2} - CH_{3} \xrightarrow{CH_{3} - CH_{2} - CH_{2} - CH_{3}}$
 $CH_{3} - CH_{2} - CH_{3} \xrightarrow{Nadyether} CH_{3} - CH_{3} - CH_{2} - CH_{3}$
 $CH_{3} - CH_{3} - CH_{3} \xrightarrow{CH_{3} - CH_{3} - CH_{2} - CH_{3}}$
 $CH_{3} - CH_{3} - CH_{3} \xrightarrow{CH_{3} - CH_{3} - CH_{2} - CH_{3}}$
 $CH_{3} - CH_{3} - CH_{3} \xrightarrow{ROM_{3} - CH_{3}} - CH_{2} - CH_{3}$
 $CH_{3} - CH_{3} - CH_{3} \xrightarrow{ROM_{3} - CH_{3} - CH_{2} - CH_{3}}$
 $CH_{3} - CH_{3} - CH_{3} \xrightarrow{ROM_{3} - CH_{3} - CH_{2} - CH_{3}}$
 $CH_{3} - CH_{3} - CH_{3} \xrightarrow{ROM_{3} - CH_{3} - CH_{2} - CH_{3}}$
 $CH_{3} - CH_{3} - CH_{3} - CH_{3} \xrightarrow{ROM_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}}$
 $CH_{3} - CH_{3} - CH$

[124]

$$\begin{array}{c} CH_{3}-CH_{2}-CH-OH \qquad (2^{0}) \quad Butan-2-ol \\ CH_{3} \\ CH_{3}-C-OH \qquad (3^{0}) \quad 2-Methyl propan-2-ol \\ CH_{3} \\ CH_{3}-C-OH \qquad Butan-2-Ol \\ C_{1}H_{3} \\ \end{array}$$

$$\begin{array}{c} CH_{3} \\ 288. \quad H-C-OH \qquad Butan-2-Ol \\ C_{1}H_{3} \\ \end{array}$$

$$\begin{array}{c} O \\ O \\ CH_{3}-C-OH \\ CH_{3}-CH_{2}$$

301. p-nitrophenol>o-nitrophenol>m-nitrophenol 302. HI > HBr > HCl > HFacidified / alkaline $KMnO_4$ (or) acidified $K_2Cr_2O_7$ 303. (i) (ii) Pyridinium chlorochromate (PCC) in CH₂Cl₂ (iii) aqueous bromine (iv) Acidified (or) alkaline $KMnO_4$ (v) Conc. H_2SO_4 at 413 K (vi) H_2/Ni , Δ or Na BH₄ (vii) NaBH₄ (viii) LiAlH₄ (x) Aq. NaOH / Δ (S_N-2 reaction) (ix) HI / red P 304. $C_6H_5OH + Na(s) \longrightarrow C_6H_5ONa + \frac{1}{2}H_2 \uparrow (Proton displacement)$ (acid) $C_6H_5OH + NaOH(aq) \longrightarrow C_6H_5ONa + H_2O$ (Salt formation) $2KMnO_4 + 2KOH \longrightarrow 2K_2MnO_4 + H_2O + O$ 305. (i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\mathrm{OH}+2\mathrm{[O]}\longrightarrow\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{H}_{2}\mathrm{O}$ OH -Br 0 (major) (ii) Br OH OН NO_2 dil HNO3 (iii) NO. OH ONa OH /CHO CHO NaOH H_3O (iv) (salicylaldehyde), СООН СООН NaOH CCl₄ Salicylic acid. and (Reimer Tiemann reaction) 306. Phenol > m - cresol o- cretol > p-cresol \simeq pKa = 10.0, 10.1 10.17 10.316

[128]

307. The reactivity of alcohols in esterification follows in the order : $CH_3OH > CH_3 - CH_2OH > (CH_3), CHOH > (CH_3)_3 (OH)$ [It follows in the order of increasing acidic strength.] 308. 3° -alcohol e.g. (CH₃)₃C (OH) Unit - XII 309. Aetophenone is formed with some part of $C_6H_5 - CH_2 - CHO$ (It forms benzoic acid with alkaline KMnO₄) 310. $\operatorname{Ad}_{N} \operatorname{eg.} > C \stackrel{\textcircled{o}}{=} \stackrel{\textcircled{o}}{O} + \stackrel{\textcircled{o}}{CN} \xrightarrow{} > \stackrel{\frown}{O} \stackrel{\frown}{V}$ Nucleophile $\stackrel{\frown}{CN}$ In > C = 0, C- is short of e⁻ density due to presence of more electronegativity of 'O'. 311. First member of the aldehyde, HCHO is a gas at room temperatuare. The rest numbers of both aliphitic and aromatic are either colourless liquid or solid depending on alkyl or aryl group size. Incease of size increases vander Walls force changing the physical state. First member of ketone (acetone) is liquid at room temperature. 312. RDX. Research developed explosive (or) Royal demolition high explosive. CHCHO + 4NH₃ \longrightarrow $N < I_2$ $N < N / N_2 / N_2$ hexamethylene tetramine (Urotropine) NO_2 $\xrightarrow{\text{NH}_4\text{NO}_3/\text{HNO}_3}_{\text{CH}_3\text{-CO}\text{-CO}\text{-CH}_3} \rightarrow \downarrow \text{Niration}$ N_{NO₂} NO 313. (T) two C_6H_5 groups due to their bulky size hinder the nucleophilic nucleophilic i.e. $\overline{SO}_{3}H$ attack. CHO CHO 0 314. $CH_3 - CH - CH_2 - C - CH_3$, 2-methyl-4-oxopentanal 4-methylcyclohexane carbaldehyde ĊH, 315. C₃H₆O: Functional isomers CH₃CH₂CHO, CH₃COCH₃ Cyclopropanol. propanal Propanone

[129]

325. Carboxyl acid is formed $RCN + 2H_2O \xrightarrow{H^+}{\Lambda} RCOOH + NH_4^+$ 326. $CH_3COOH \xrightarrow{NH_3} CH_3COONH_4 \xrightarrow{\Delta} CH_3CONH_2$ 327. Phenylmagnesium bromide. $O = C = O + C_6 H_5 MgBr \longrightarrow O = C \xrightarrow{\bigvee} OMgBr \xrightarrow{H_2O} C_6 H_5 COOH$ 328. Benzoic acid with PCl₅ / SOCl, gives benzoyl chloride. $C_6H_5COOH + PCl_5 \longrightarrow C_6H_5COCl + POCl_3 + HCl_3$ $C_{6}H_{5}COOH + SOCl_{2} \longrightarrow C_{6}H_{5}COCl + SO_{2} \uparrow +HCl \uparrow$ 329. (i) CH₃COOH < HCOOH < ClCH₂COOH (ii) $(CH_3)_3 CCOOH < (CH_3)_2 CHCOOH < CH_3OOH$ [+I effect decreases acidic strength] Cl CH,COOH < Cl,CH COOH < CCl, COOH (iii) [-I effect increases acidic strength] (iv) $(CH_3)_2$ CHCOOH < CH_3 CH₂COOH < CH_3 COOH < $ClCH_2 - CH_2$ -COOH < ClCH₂COOH 330. (i) RCO²₂OH (ii) RCOO²₂H (iii) RCO²₂OH (iv) RCO²₂OH 331. $C_3H_8 < CH_3CHO < C_2H_5OH < CH_3COOH$ 332. CH₃COOH is more soluble in water than benzoic acid. 333. $CH_3COOH < C_6H_5COOH < HCOOH < Cl_3CCOOH$ 334. Na BH₄ 335. $CH_3COCOOH$, $HOOC - CH_2 - CH_2 - COOH$ Pyrovic acid Succinic acid. 336. (i) o-nitrobenzoic acid > p-nitrobenzoicd > m-nitrobenzoicacid > benzoic acid o-Toluic and > Benzoic acid > m-Toluic acid > p-toluic acid. (ii) (iii) o-chlorobenzoic acid > m-chlorobenzoic acid > p-chlorobenzoic acid > benzoic acid $HCOOH > CH_{3}COOH > C_{2}H_{5}COOH > C_{3}H_{7}COOH$ (iv) (v) o-hydroxy benzoic acid > m-hydroxy benzoic acid > benzoic acid > p-hydroxy benzoic acid. 337. oil of bitter almond : C_6H_5 -CHO (Benzaldehdye) Unit – XIII 338. Balz - Schiemann reaction. $\operatorname{Ar} \overset{+}{\operatorname{N}_2} \operatorname{Cl}^{-} \xrightarrow{\operatorname{HBF}_4} \operatorname{Ar} \operatorname{N}_2 - \operatorname{BF}_5 \xrightarrow{\Delta} \operatorname{Ar} \operatorname{F}_5$

349. CH₃CH₂CN → ^{HAH4}→ CH₃ − CH₂ − CH₂NH₂ (1° amine)
CH₃CH₂NC → ^{HAH4}→ CH₃CH₂NH − CH₃ (2° amine)
isocyanide
(Then 1° and 2° amines to be distinguished by carbylamine text.
CH₃ → CH₃ → CH₂
350. CH₃ → (−Br → ^{WR}/_(Bw)) → CH₃ → C⁻ − CH₃ + NH₄Br
CH₃
351. C₆H₃ ^N(CH₃)₃ < C₆H₅CH₃ < C₆H₃N(CH₃)₂
352. alkaline chloroform.
C₆H₃NH₂ + 3KOH + CHCl₃ → ^{warn} → C₆H₃NC + 3KCl + 3H₂O
upleasant smell.
353. C₆H₃COOH → ^{10 NH}/_{1 CH} → C₈H₂CONH₂ → ^{Be₁/KOII} → C₆H₃NH₂
Hoffmann degradation
354. C₆H₃N₂Cl → ^{COPP0000}/_{1 HEVIA} → C₆H₅CH₂NH₂ > NH₂SC
SD ue to release of large volume of gases like N₁H₂ and CO₂.
356. (C₂H₃)₂NH > C₁H₂NH₃ > C₆H₅CH₂NH₂ > NH₃ > C₆H₃NH₂

$$= \frac{NO_2}{N} → \frac{NH_2}{N} → \frac{NH_2}{(CH_1O),0} → \frac{NH-COCH_3}{O}$$

Unit - XV
358. Macromolecule : It may or may not contain monomer units c.g. chlorophyll
(C₃H₂O₃NMg) is a macromolecule but not a polymer, as it does not contain monomer.
Thus all polymers are macromolecules while all macromolecules may not be polymers.
359. Linear chain polymer : Bakelite
360. i) Buna S < polythene < Nylon - 6
361. Buna -N: Co-polymer of butadiene and acyrlonitrile
Buna -S: Copolymer of butadiene and styrene
362. Uses of Buna -N i) Making oil seals as this is resistant to lubricating oil, organic solvents
i) For lining in tanks, making conveyor belt.
363. Monomers Nylon-2-nylon-6 (biodegradable polymer)
glycine (H₂N-CH₂-COOH) and amino caproic acid NH₂ - (CH₂)₅COOH.

PVC polyvinylchloride.

- PHBV Poly β hydroxybutyrate Co- β -hydroxy valerate)
- 373. The pressure of any other molecule (impurity) during free radical polymerisation can act as chain initiator or inhibitor which will interfere normal polymerisation reaction.
- 374. CCl_4 as chain transfer agent : The mode of polymerisation in presence of CCl_4 during the polymerisation of styrene.

This inhibits polymerisation forming lower average mol. mass polymer.

Phenols, quinone, amines etc. promote inhibition.

- HDP (High density polythene) e.g. polymerisation of ethylene in presence of Zeigler Natta catalyst at high temperature and pressure (6–7 atoms) where closely packed linear chains are formed. Therefore called high density polymer.
 - LDP (low density polythene)

$$n(CH_2 = CH_2) \xrightarrow{\text{temp.375-570K, 1000 to 2000 atm.}} (-CH_2 - CH_2 -)_n$$

Polyethene

It consists of branched chain molecules preventing quite close packing and density becomes low with low tensile strength

376. Melamine - formaldehyde polymer (very hard and tough)

Unit - XVI

- 377. Antibiotic : pencillin, Tetacyclin Analgesic : Aspirin, paracetamol, morphine.
 Antiseptic : Mercurochrome, Tinctureiodine Antipyretic : Aspirin, paracetamol
 Tranquiliser : Equanil, meprobamate. Antimicrobial : antibacterial antifungal, antiviral
 Antacid : Mg(OH)₂, Al(OH)₃ Antihistamine : Ranitidine, Terfenadine
- 378. Ranitidine
- 379. Broad spectrum antibiotic.
- 380. 0.2% phenol as antiseptic, 1% aq. solutions disinfectant
- 381. 2.3% solution iodine in water and alcohol. Used as antiseptic onwards
- 382. Cationic detergent : cetyltrimethyl ammonium bromide

 $\left[CH_{3}(CH_{2})_{15}-N(CH_{3})_{3}\right]^{+}Br^{-}$

	Anionic detergent : Sodium dodecylbenzene sulfonate.					
	$CH_3(CH_2)_{11} \longrightarrow S\overline{O}_3 Na^+ (ABS-detergent)$					
383.	Biodegradable detergent : (Unbranched chain can easily be bio-degraded).					
	Sodium laurylsulfate. $CH_3(CH_2)_{10} - CH_2 - O - S\overline{O}_3 Na^+$ (Linear alkylsulfate)					
384.	Antimicrobial : The drug which are used to cure diseases caused by bacteria, fungi and viruses are called antimicrobal. eg. Erythromycin, tetracyclin, chloramphenecol.					
385.	Tranquilizer.					
386.	It is used in diagnosis, prevention & treatment of diseases.					
387.	Potassium salt of long chain fatty acids like oleic, palmitic and stearic acid.					
388.	Antacid, antihistamine					
389.	Tranquilizer					
390.	Tranquilizer to releive depression, hypertension.					
391.	It is an antimicrobial agent to treat disease called Syphills (Arsenic present $-As - As - in$ its composition)					
392.	Bithional acts as an antiseptic agent.					
393.	$\operatorname{CH}_{3}(\operatorname{CH}_{2})_{10} - \operatorname{CH}_{2}^{-} \operatorname{OSO}_{3}^{-} \operatorname{Na}^{+} \qquad \operatorname{CH}_{3} - \left(\operatorname{CH}_{2}\right)_{15} - \operatorname{N}_{\oplus}^{+} \overset{\operatorname{CH}_{3}}{\searrow} \operatorname{CH}_{3}^{-} \operatorname{Br}_{H_{3}}^{-}$					
	(nonpolar)hydrophobic hydrophilic (polar) Hydrophobic hydrophilic					
394.	Fillers are added to laundry soaps : Fillers are added to change the properties of soap in order to make them more useful.					
	e.g. Sodium rosinate, sodium silicate, borax and sodium carbonate are added to laundry soaps to increase their lather forming ability.					
**						
Unit-	XIV					
395.	Monosaccherides are simple carbohydrates containing 3 to 7 C-atoms which cann't be hydrolysed into still simple compounds. e.g. glucose, (aldose) frutose (ketose).					
396.	(i) Cell walls of plants are made up of cellulose.					
	(ii) In the form of starch, carbohydrates act as storage molecules in plants.					
397.	RNA. Adenine (A), Guanine (G), Cytosine(C) Uracil (U)					
	DNA. Adenine (A), Guanine (G), Cytosine (C) Thymine (T) (AGCT)					
398.	The elements generally present in aminoacids are C, H, O, N.S present in methionine and cysteine					
399.	Sucrose $\xrightarrow{\text{hydrolysis}}$ glucose + fructose					
	Lactose $\xrightarrow{hydrolysis} \beta$.D. Galactose + 2.D. Glucose					

400. Carbohydrates used as biofuel. Starch and glycogen. 401. This in an inherited disease caused by a defect in a gene. It occcurs if two genes are inherited - one from father & one from mother. A person who inherits just one gene is healthy & said to be a 'Carrier' of the disease. 402. Excess glucose is stored in liver as glycogen. 403. Zwitterion is a molecule that contains both positively and negatively charged functional groups, with net charge zero. e.g. $H_2N - CH_2 - COOH \implies \overset{+}{N}H_3 - CH_2 - COO^{-1}$ Zwitter (dipolar) ion glycine 404. Monosaccharides : Ribose, 2-deoxyribose, galactose, fructose Disaccharides : Maltose, Lactose 405. $CHO(CHOH)_4 \cdot CH_2OH \xrightarrow{Br_2(Aq)} COOH$ (CHOH)₄ CH₂OH gluconicacid OHC - $(CHOH)_4$ - $CH_2OH \xrightarrow{HI}_{red(P)} CH_3 - (CH_2)_4 - CH_3$, n - hexane \downarrow HNO₂ $HOOO - (CHOH)_4 - COOH$ (glucaric acid) 406. The aminoacids synthesized in the body are called nonessential aminoacids. e.g. Gly, Ala etc. The amino acids which cannot be synthesised in the body & must be obtained from diet are known as essential aminoacids eg. Valine (Val), Leucine 407. Vitamins : These are organic compounds which are essential nutrient that body may need to get from food. The deficiency causes specific diseases. Plant can synthesise almost all type of vitamins. Fat soluble vitamins are A, D, E and K 408. RNA molecules are three types & they perform different fucntions. Messanger RNA (m-RNA): This carries genetic information from template of (i) DNA chain to protein site. Transfer RNA (t-RNA) : This is the smallest of all RNAs, single stranded and (ii) occur free in cytoplasm of the cell, one for each amino acid of the protein. (iii) Ribosomal RNA (r-RNA): This is present in ribosome and constitute 80% of total RNA. It helps in protein synthesis and carries no message to DNA.

409.	Nucleoside : It consists of two components : pentose sugar-N. containing heterocyclic base.				
	Nucleotide : A monomeric unit of nucleic acid consists of phosphoric acid unit and nucleoside.				
	Base Sugar – Phosphate – Nucleotide				
410.	Deficiency of Vitamins		Disease caused		
	A (Retinol)	_	right blindness, Xerosis (dryskin)		
			Xerophthalamia (Cornea comes opaque)		
	B ₁ (Thiamine)	_	Loss of appetite, Beriberi		
	B ₂ (Riboflavin)	_	Skin diseases, sore tongue, anaemia		
	B ₆ (Pyridoxine)	_	nervous disturbance, convulsions		
	B ₁₂ (Cyanocobalamine)	-	form anaemia		
	C (Ascorbic acid)	_	Scurvy and pain in joints		
	D. (Calciferols)	_	rickets		
	E. (α -Tocopherol)	_	Sterility in M and F, muscular weakness,		
	K. (Phytonadione)	_	Problem in coagulation of blood		
411.	The possible sequence of the amino a	acids in ti	ripeptide is :		
	(i) Gly. Ala-Phe (ii) Gly-Phe	e-Ala	(iii) Ala-Gly-Phe (iv) Ala-Phe-Gly		
	(v) Phe-Gly-Ala, Where Gly-glycir	ne, Ala-A	lamine, Phe-Phenylalamine		
412.	Sources of Vit. A: egg, cod liver oil ((carrot, to	omatoes, ripe mangoes)		
413.	Ribosomes are the sites in a cell is whether the sites in a cell is whether the sites in a cell is whether the sites are the sit	hich prot	tein synthesis takes place.		
414.	When fructose is treated with ammon form which exists in equilibrium with g silver mirror.	uacal silve glucose a	er nitrate, fructose is converted into enolic and hence reduces Tollen's reagent forming		
	$CH_2 - OH \xrightarrow{OH^-}$	H-C-	$-OH \xrightarrow{OH^-} H - C = O$		
	$\dot{\mathbf{C}} = \mathbf{O}$	Ü-	-OH HC-OH		
	Fructose	(enol	l) glucose		
415.	Vit. D- on exposure to sunlight.				
	Vit. K - by bacteria living in gut.				
	•	* * *			

Group - B

Short Answer type (2/3 mark each) :

Answer the following :

Unit - I

- 1. Crystalline solids are anisotropic in nature. What does this statement mean?
- 2. What is radius ratio ?
- 3. Why does the window glasses of the old buildings look milky?
- 4. Gold (atomic radius = 0.144 nm) crystallizes in a face centred unit cell. What is the length of a side of the cell?
- 5. Why is Frenkel defect not found in pure alkali metal halides ? Explain.
- 6. Zinc oxide is white but it turns yellow on heating. Explain.
- 7. Why does presence of excess of lithium makes Li crystals pink?
- 8. What are the important consequences of Schottky and Frenkel defects in crystals?
- 9. What change occurs when AgCl is doped with CdCl₂? Explain.
- 10. Give important differences between crystalline and amorphous solids.
- 11. Give the points of differences between Schottky defect and Frenkel defect ?
- 12. Determine the atomic mass of an unknown metal if you are given the mass, density and dimension of the unit cell of its crystal.
- 13. Discuss what are unit cells.
- 14. What is the formula of a compound in which the element 'Y' forms CCP lattice and atoms of 'X' occupy $\frac{1}{3}$ of the tetrahedral voids ?
- 15. The compound CuCl (formula mass = 99 gram / mol has FCC structure like ZnS. Its density is 3.4 gram/cm³. What is the volume of unit cell? ($N_A = 6.023 \times 10^{23} \text{ mol}^{-1}$)
- 16. An element with density 10 gram / cm³ forms a cubic cell with edge length 3×10^{-8} cm. What is the nature of cubic unit cell if atomic mass of the element is 81 g/mol?
- 17. Gold (atomic radius = 0.144 nm) crystallises in face centred unit cell. What is the edge length?
- 18. Why is Frankel defect not occurred in pure alkali metal halide?
- 19. Why does presence of excess of Lithium makes LiCl crystal pink?
- 20. What are the important consequences of Schottky and Frenkel defect in crystals?
- 21. Examine the featues of the defective crystal :

Answer the following :

i) Is it a stoichiometric defect ?

- ii) What is name of such defect ?
- iii) Name two compounds showing such defect.
- iv) How does this defect affect the density of the crystal?
- 22. What type of defect when a solid is heated ? Which physical property is affected by it ?
- 23. Why is non-stoichiometric sodium chloride yellow?
- 24. What do you mean by interstitial voids? Discuss the different types of voids.
- 25. Compare the characteristics of ionic and metallic crystals.
- 26. Discuss Rock salt (NaCl) type structure.
- 27. An element crysallices in a strucure having fcc unit cell of an edge 200 pm. Calculate the density if 400 gram of this element contains 48×10^{23} atoms.

UNIT - II

- 28. How is equivalent mass of $K_2 Cr_2 O_7$ related to molar mass in acidic medium?
- 29. What is vapour pressure ?
- 30. Identity any two factors affecting vapour pressure.
- 31. What is standard solution?
- 32. Why ether has lower b.p than alcohol?
- 33. What is the effect of pressure on the b.p. of the liquid ?
- 34. Identity two factors affecting solubility of solid in liquid.
- 35. What is the relationship between depression in freezing point of a solution and molecular mass solute ?
- 36. Why is CCl_4 immiscible in water ?
- 37. When does a liquid start boiling?
- 38. Why is vapour pressure of solution is lower than that of pure solvent ?
- 39. What is the molality of 10% (wt.) urea solution?
- 40. Show that total vapour pressure for a solution of volatile liquids is linearly related with molefraction of the solute.
- 41. Vapour pressure of chloroform and dichloromethane at 298 K are 200 mm Hg and 415 mm Hg respectively calculate the vapour pressure of the solution prepared by mixing 25.5 g of CHCl₃ and 40 gram of CH_2Cl_2 at 298 K.
- 42. Express the composition of the vapour phase in molefraction in the above solution.
- 43. Between $CHCl_3$ and CH_2Cl_2 which one is more volatile.
- 44. A solution of acetone and chloroform causes negative deviation. What type of azeotrope does it constitute?
- 45. 18 gram of glucose (180 gram / mol) dissolved is 1 kg of water. At what temperature will water boil at 1.013 bar? (K_b for water is 0.52 K kg mol⁻¹.)
- 46. 1.0 gram of a non-volatile solute in 50 g. of benzene lowered the freezing point of benzene by 0.40 K. K_f for benzene is 5.12 K. kg mol⁻¹. Find the molar mass of solute.
- 47. What is reverse osmosis ?

48. Vapour pressure of pure water at 298 K is 23.8 mm Hg 50 g of urea (mol-mass 60 g/ mole) is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering. 49. 200 cc. of an equeous solution of a protein contains 1.26 g. of protein. The osmotic pressure of such a solution at 300 K is found to be 2.57×10^{-3} bar. Calculate the molar mass of the protein. 50. Calculate the pressure in pascals exerted by a solution prepared by dissolving 1.0 gram of polymer of molar mass 185000 in 450 ml of water at 37°C. 51. Mention any two applications of Henry's law. 52. H₂S, a toxic gas with rotten egg like smell is used for qualitative analysis. If the solubility of H₂S in water at STP is 0.195m. Calculate Henry's law constant. 53. Justify that relative lowering in vapour pressure is a colligative properly. 54. What type of deviation from an ideal solution will be shown by solution of cyclohexane and ethanol? The freezing point of water is reduced on adding solute to it. 55. (i) Show that depression of freezing point, ΔT_f is a colligative property. (ii) Why is sometimes abnormal molecular mass of the substance observed by using 56. collogative properties of the solution? 57. Discuss the significance of K_H. 58. Henry's law constant for CO_2 in water is 1.67×10^8 Pa at 298 K. Calculate the quantity of CO_2 in 500 ml of soda-water when packed under 2.5 atm pressure of CO_2 at that temperature. 59. Define the following terms : ideal solution (i) (ii) Azeotrope (iii) Osmotic pressure 60. Why salt is sprinkled on road during winter in cold region? 61. Match the following: Solubility of gas (i) Non-ideal solution (a) Liquid - Liquid solution (ii) Henry's law (b) Positive deviation (iii) Raoult's law (c) (d) **Desalination** (iv) Heterogeneous (v) Reverse osmosis 62. The vapour pressure of an aqueous solution of glucose is 750 mm of mercury at 100°C. Calculate the molality and mole fraction of solute. **UNIT - III** 63. What is the difference between electrochemical and electrolytic cell? 64. Relate cell potential with electrode potential with example. 65. How does electro-chemical series predict the feasibility of redox reaction? What is the function of a salt bridge? 66. 67. Design a cell without use of salt bridge. What is the relation between standard EMF and equilibrium constant. 68.

69.	Write down Nernst equation for-				
	(i) $\operatorname{Fe}_{(C_1)}^{3+} + 2e \longrightarrow \operatorname{Fe}$				
	(ii) $Zn + 2Ag^{+}(C_1) \longrightarrow Zn^{2+}(C_2) + 2Ag$				
 70. 71. 72. 73. 	(Zn-AgNO ₃ - Cell) The molar conductance of a solution of AlCl ₃ is found to 130 Ohm ⁻¹ cm ² mol ⁻¹ at 298 K. Calculate the equivalent conductance. Distiguish between strong electrolytes & weak electrolytes. Define specific conductance, equivalent enductance and molar conductance. Predict the electrolytic product of (i) fused NaCl (ii) NaCl (Aq)				
	(iii) $CuSO_4(Aq)$ taking Pt. electrodes				
	(iv) $CuSO_4(Aq)$ taking copper electrodes.				
	 (v) AgNO₃ taking Ag electrodes (vi) AgNO₃ taking Pt-electrodes (vii) Acidulated water taking Pt-electrode. 				
74.	What is the difference between chemical equivalent and electrochemical equivalent? Explain taking silver example.				
75.	Explain i) Blue colour of copper sulfate solution is discharged by dipping iron rod in it. ii) The pH of aqueous of NaCl increases on electrolysis				
76.	(i) How much electricity is required in Faraday for oxidation of mole (i) H_2O_2 to O_2 ? (ii) 1 mole of FeO to Fe_2O_3				
77.	 (i) Silvre nitrate solution can not be stored in a copper vessel. (ii) Zinc sulphate solution can be stored in Cu-vessel. explain. 				
78.	What is difference between electrode potential and cell potential?				
79.	What is electroplating ?				
80.	What are main difference between emf of cell and potential difference ?				
81.	Write down the notations representing cathode, anode and galvanic cell.				
82. 83.	Calculate the time required for a current of 2 amp. to decompose one gram mole of water				
84.	Write down Nerst equation. How is it useful?				
85.	What is a dry cell?				
86.	Calculate the Zn-Zn ²⁺ electrode in which $[Zn^{2+}] = 0.001 \text{ M}, E_{Zn^{2+} Zn} = -0.76 \text{ V}.$				
87.	Specific conductance of a 0.1 N solution of electrolyte is 2.4×10^{-2} ohm ⁻¹ cm ⁻¹ . Calculate its equivalent conductance				
88.	An electronic current is passed through two solutions (a) $AgNO_3$ (b) solution of 10 gram of blue vitrol 500 ml water using Pt. electrode separately. After 30 minutes it was found that 1.307 gram Ag was deposited. What is the concentration of Cu^{2+} after electrolysis?				

- 89. A current of 1.7 amp. is passed thrpugh 300 ml of 0.16 M ZnSO₄ solution for 230 seconds with current efficiency of 90%. Find the concentration of divalent zinc in solution. $E_{N^{2^{+}|Ni}} = -0.236$. If this electrode is coupled with hydrogen electrode, the emf of cell 90. becomes zero. Calculate pH the acid used in the electrode. 91. Calculate the quantity of elecricity needed to quantitatively decolourise the blue colour of copper sulfate 100 ml 0.01M solution. E_{values}^{0} for $Fe^{3+} + 3e^{-} \rightarrow Fe$ and $Fe^{2+} + 2e^{-} \rightarrow Fe$ are -0.036 V and -0.44 V 92. respectively. Calculate the ΔG^0 value for the reaction. Fe + 2Fe³⁺ \rightarrow 3Fe²⁺. 93. Calculate the cell potential of- $\operatorname{Fe}(s)|\operatorname{Fe}^{2+}(0.001M)||\operatorname{H}^{+}(1M)||\operatorname{H}_{2}(1 \operatorname{atm}),\operatorname{Pt} \quad \operatorname{E}_{cell}^{0} = 0.44 \operatorname{V}.$ 94 Calculate the log K_a of the reaction – $NiO_2 + 2Cl^- + 4H^+ \implies Cl_2 + Ni^{2+} + 2H_2O$ at 298 K if E_{Cell}^0 is 0.320 V. 95. The resistance of conductivity cell containing 0.001 M KCl solution at 298 K is 1500 ohm. What is the cell constant if conductivity of 0.001 M KCl solution is 0.146×10^{-3} ohm⁻¹ cm⁻¹? Calculate its molar conductance. How would you determine $E^0_{Mg^{2+}|M}$? 96. 97. The conductivity of 0.001028 M acetic acid is 4.95×10^{-5} S cm⁻¹. Calculate the Ka value if $\Lambda_m^0 = 390.5 \,\mathrm{S} \,\mathrm{Cm}^2 \mathrm{mole}^{-1}$. 98. Predict the products on electrolysis of dil H_2SO_4 taking Pt-electrodes. 99. What happens to the pH value of copper sulfate solution on electrolysis? 100. Calculate the standard cell potential of Zn-AgNO₃ cell. 101. Show that copper has +ve value of electrode potential while zinc has negative. 102. What current strength (amp./ sec) in amp. will be required to liberate 10g of iodine from KI (Aq). (Atomic mass of iodine = 127) (or) Calculate the current strength required to deposit 10 gram of zinc in 2 hours. 103. Three electrolytic cells A, B, C containing solution ZnSO₄, AgNO₃ and CuSO₄ respectively are connected in series. A steady current of 1.5 ampere was passed through than until 1.45 gram of silver deposited at cathode of cell B. How long the current flow? What mass of Cu and Zn were deposited. 104. Resistance of a conductivity cell filled with 0.1M KCl solution is 100 ohm. If the resistance of the same cell when filled with 0.02M KCl solution is 520 ohm. Calculate the conductivity and molar conductivity of 0.02M KCl solution. (The conductivity of 0.1 M KCl solution
 - 105. Discuss construction SHE and its application.

is 1.29 ohm⁻¹ m⁻¹.

UNI	UNIT - IV							
106.	. Half life period of a substance is 20 days. After 30 days what percentage of the substance will be left ?							
107.	Identify the factors that	at affect rate of read	ction.					
108.	What is threshold ene	rgy?How is it rela	ated to E_a ?					
109.	The rate of reaction increases four times when the temperature changes from 300 K to 320 K. Calculate the activation energy assuming that the activation energy is independent of temperature.							
110.	Show that the time rec	quired for $\frac{3}{4}$ th of t	he reaction to occur i	s two times that	required			
	for half of the reaction							
111.	Explain the effect of te	emperature on the	rate constant of a read	ction.				
112.	In a first order reaction the rate constant and t	, if it takes 15 minut he time in which 10	tes for 20% of original 0% of the original ma	matter to react. (tter remain unre	Calculate acted.			
113.	Half-life of a 1st order	reaction is indepen	ndent of initial concer	tration, Justify.				
114.	A reaction, i.e. of first we start with $[A] = 0$.	order with respec 5 mol L ⁻¹ , when w	et to reactant 'A' has a rould [A] reach the va	arate constant 6 alue of 0.05 mol	min ⁻¹ . If			
115.	A chemical reaction	2A = 4B + C	is gas phase occurs	in a closed ves	ssel. The			
	concentration of B is t	found increased by	$5 \times 10^{-3} \text{ mol}/\text{L} \text{ in } 1$	0 seconds. Calc	ulate the			
11.6	rate of disappearance	of A.						
116.	Classify the reactions	in respect of rate o	freaction.					
117.	How does catalyst affect the rate of reaction ?							
118.	Catalysts affect the kinetics (k) but not the equilibrium costant (K).							
119.	What do you mean by effective collisions?							
120.	What are instantaneou	is and average rate	e of a reaction?	1 •.•				
121.	at constant volume :	re obtained during t	he first order thermal c	lecomposition of	$f N_2 O_5(g)$			
	$2N_2O_5(g)$	$\rightarrow 2N_2O_4(g)+O_2$	(g)					
	No of observation	Time/s	Total pressure	/ (atm)				
	1	0	0.5					
	2	100	0.512					
	Calculate the rate con	stant.						
122.	. A first order is 20% complete in 10 minutes. Calculate the specific rate constant of the reaction & the time taken for completion of 75% of it.							
123.	A first order reaction needed for 80% comp	takes 69.3 minutes of the second s	s for 50% completion	. How much tim	ne will be			
124.	Starting with different i	nitial amounts of ac	etone, the half life periods follows	ods for the decor	nposition			
	a (mm in Hg)	98	192	230	296			
	$t_{\frac{1}{2}}$ (sec)	86	84	85	86			
	What is the order of reaction? Give reason							

125.	Draw the following plots for zero order reaction.					
	(a) Plots of concentration vs time.					
	(b) Plot of rate vs concentration					
	(c) Plots of half-live	s vs con	centration	L.		
126.	Why hydrolysis of et first order ?	hylaceta	te with N	aOH is of second order while with HCl, it's of		
127.	The following data w	ere obtai	ined for th	e reaction,		
	$2A + 2B \longrightarrow$	Product	S.			
	Expt	Concer	ntration	Initial rate		
				mol Litre ⁻¹ min ⁻¹		
		[A]	[B]			
	Ι	0.01	0.01	0.005		
	Ш	0.02	0.01	0.020		
	III	0.02	0.03	0.060		
	Determine the order of	ofreactio	on and wr	ite rate law equation for the reaction.		
128.	Distinguish between	ate of re	action an	d specific reaction rate.		
129.	What is order of reac	tion?				
130.	For first order reaction	on, show	that [R]	$= [R]_0 e^{-kt}.$		
131.	. A first order reaction takes 40 minutes for 80% decomposition. Calculate its $t_{\frac{1}{2}}$ value.					
132.	. Explain (i) Fuels don't burn by themselves even in plenty of oxygen of air.					
	(ii) Large fraction of molecules has energy more than E_{th} , yet the reaction is very slow.					
133.	. The rate of decomposition of NH_3 on Pt surface is of zero order. What are rate of					
	production of N ₂ and H ₂ if $k = 2.5 \times 10^{-4} \text{ M/sec.}$					
UNI	T - V					
134.	. What is the cause of Tyndal effect ?					
135.	. Why are colloidal particles charged ?					
136.	. What is electrophoresis?					
137.	Classify solutions on the basis of particle size.					
138.	. What are lyophilic colloids? Provide its characteristics?					
139.	. Name the factors that goveren adsorption of gas on solid.					
140.	What is detergent ? How does it work ?					
$\ {}^{141}_{142}$	How does colloidal solution differ from true solution?					
142.	Why are colligative properties almost negligible in case of colloidal solution?					
14 <i>3</i> .	. Dena is formed when river meets sea – give reason.					

- 144. Distinguish between homogeneous and heterogeneous catalysts.
- 145. What is meant by selectivity of a catalyst?
- 146. State and explain Hardy Schulze rule.
- 147. Colloid is a state of matter. explain.
- 148. What are catalysts? Discuss its characteristics.
- 149. Explain the adsorption theory of heterogeneous catalysis.
- 150. Adsorption is always exothermic in nature. Explain.
- 151. Layer of fat on pans can be removed by adding boiling washing soda solution, give reason.
- 152. Oozing of blood can be clotted by ferric hydroxide, why?
- 153. The sol formed by adding AgNO₃ (Aq) to excess of potassium iodide solution is –vely charged while same produced by the reverse manner has positive charge. Explain.
- 154. Why do colloidal solutions differ in colours?
- 155. How can you prepare a sol of ferric hydroxide?
- 156. What happens $H_2S(g)$ is passed through an aqueous solution of $SO_2(g)$.
- 157. Identify the phase and medium in the following :
 - (i) smoke (ii) fog (iii) cheese (iv) milk (v) cream (vi) soaplather
- 158. Why does physisorption decrease with rise in temperature ?
- 159. What are characteristics of lyophobic sols?
- 160. Write down the differences between multimolecular and macromolecular colloids.
- 161. What are charateristics of associated colloids?
- 162. What are enzyme catalyst? Provide two examples of enzyme catalysts?
- 163. Match the following :

Sec A (process)

- i) Haber's process
- ii) Ostwald process
- iii) Contact process
- iv) Deacon's process to manufacture chlorine.
- v) Bosch process to manufacture H_2 from water gas
- vi) Hydrogenation of oil to ghee

UNIT - VI

- 164. What is the difference between :
 - (i) an ore and a mineral
 - (ii) an alloy and amalgam
 - (iii) slag and flux
 - (iv) roasting and smelting

Sec. B (catalyst)

- (a) $V_2 O_5(s)$
- (b) $CuCl_2$ at 773 K
- (c) Pt- at 573 K
- (d) Finely divided Ni
- (e) Finely divided Fe-Mo(promoter)
- (f) ferric oxide Cr_2O_3 (promoter)

165.	Mat	ch the following :				
		metal		Its ore		
	(i)	Sodium	(a)	limonite		
	(ii)	Magnesium	(b)	Cryolite		
	(iii)	Aluminium	(c)	Gypsom		
	(iv)	iron	(d)	Rock salt		
			(e)	Epsom		
166.	Nan	ne of the metal	Ref	fining process involved		
	(i)	Mercury	(a)	Hall and Heroult electrolytic		
	proc	cess				
	(ii)	Nickel	(b)	van Arkel process		
	(iii)	Titanium	(c)	Liquation		
	(iv)	Aluminium	(d)	Mond's process		
167.	Nan	ne some ores which can be concentrated b	y ma	agnetic separation method.		
168.	Disc	cuss leaching during extraction of Aluminiu	m.			
169.	Alur	minothermy does not occur at room tempe	eratu	re. why?		
170.	Wha	at is the role of depressant in froth floatation	on pr	rocess?		
171.	Сор	per can be extracted by hydrometallurgy b	out n	ot zinc. Explain.		
172.	Why thro	y is extraction of copper from its sulfide or ugh reduction ?	e dif	ficult than that from its oxide		
173.	Name the elements commonly present in anode mud during electrorefining of copper. Why are they so present ?					
174.	Write down the reactions taking place in different zones of blast furnace.					
175.	What is the role of cryolite in the metallurgy of 'Al'?					
176.	Discuss the refining of Ge / Ga.					
177.	Hov	v does Nickel get purified ?				
178.	Hov	v is leaching carried out in case of low gra	ide c	opper ores ?		
179.	(a)	Why do metals like Ag, Hg, Zn & Pb mo	ostly	occur as sulfide rather than oxide?		
	(b)	Meta sufides occur mainly in rocks but n	netal	halides mostly is lakes and seas.		
180.	Wha	at happens to the ore during (i) calcination	(ii) r	roasting?		
181.	Wha	at is the function of lime stone during extra	ctior	n of iron ?		
UNI	Γ- V	П				
Expl	ain:					
182.	BiC	l_3 exists but not BiCl ₅				
183.	P ca	n show covalency of five but nitrogen car	n't.			
184.	Pt d	issolves in aquaregia				
185.	Nitr	ogen is a gas but 'P' is solid.				
186.	Nitrogen is diatomic while 'P' is polyatomic.					
187.	Nitro	ogen differs from other elements of the gro	oup.			

- 188. Bond angle of $Pl_3 > PBr_3 > PCl_3$
- 189. Bond angle of hydrides follows in the order $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
- 190. Basic character of $NH_3 > PH_3 > AsH_3$
- 191. Boiling point of hydrids of group 15 follows in the order $NH_3 > BiH_3 > SbH_3 > AsH_3 > PH_3$
- 192. Manufacture of NH₃ by Haber's process follow Lechatelier's Principle.
- 193. With pure HNO_3 (cone.) iron becomes passive.
- 194. All N-O bonds in NO_{3}^{-} are identical.
- 195. H_2SO_4 , CaCl₂, P_2O_5 fail to dry NH₃
- 196. Tailing of mercury takes place with Ozone.
- 197. Conc. Sulfuric acid is a viscous liquid.
- 198. NaCl with conc. H_2SO_4 gives hydrogen chloride gas, but NaBr and Nal fails to give HBr and HI.
- 199. Halides are colourless but halogens are coloured.
- 200. HF is a liquid but other hydrogenhalides are gases.
- 201. The reducing nature of HX, increases from HF to HI, so also acidic nature.
- 202. Orthophosporic acid in tribasic while phosphorous acid is dibasic.
- 203. HNO_3 acts as oxidant but HNO_2 both as oxidant and reductant.
- 204. Ammonium nitrite never gives sublimate on dry test tube heating.
- 205. PF_3 does not get hydrolysed.
- 206. NF_3 is less polar than NH_3 .
- 207. SO₂ turns lime water milky and on excess milkiness disappears.
- 208. O_2 in a gas but sulfur is a solid.
- 209. Oxygen acts as reducing agent when acts with fluorine.
- 210. Oxygen differs form other elements of the group.
- 211. H_2O is a liquid but H_2S is a gas.
- 212. H_2O_2 decolorizes KMnO₄ but not Ozone.
- 213. Oxides of nitrogen responsible of Ozone layer depletion.
- 214. F_2 in a stronger oxidizing agent than Cl_2
- 215. Bleaching by ' Cl_2 ' is permanent while by SO₂ in temporary.
- 216. Interhalogens are more reactive than halogen itself.
- 217. BrF_3 is slightly bent T-shape.
- 218. Noble gases have very low b.p. and m.p.
- 219. Group-18 elements are called areogens to noble gases.
- 220. Water is not added to cone. H_2SO_4 for dilution but reverse may be followed.
- 221. $SO_3(g)$ acts as oxidizing agent but SO_2 acts as both oxidant and reductant.
- 222. Formation of $O_2 PtF_6$ give idea of formation of xenon compounds.
- 223. (a) Anhydrous HCl_(g) in bad conductor but aq. HCl is a good conductor of electricity.
 - (b) Iodine is more solubie is Kl solution, than in water.

224. Fluorine differs from other halogens of group 17.

UNIT - VIII

- 225. A transition metal exhibits highest oxidation state in oxides and fluorides. Explain why.
- 226. Write some characteristics of transition elements.
- 227. The chemistry of the actionoid elements is not so smooth as that of the lanthanoids. Justify this statement by giving some examples from the oxidation state of these elements.
- 229. Transition metals and their compounds are generally found to be good catalysts.
- 230. Complete the following chemical equations :

(i)
$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + \operatorname{Fe}^{2+} + \operatorname{H}^{+} \longrightarrow$$

(ii)
$$2 \operatorname{CrO}_4^{2-} + 2 \operatorname{H}^+ \longrightarrow$$

- (iii) $MnO_4^- + H^+ + Fe^{2+} \longrightarrow$
- 231. Of the d^4 species, Cr^{2+} is strongly reducing while Mn(III) is strongly oxidising. Explain.
- 232. Explain: i) transition elements form complexes.
 - ii) Most of the transition metal ions are attracted into magnetic field.
- 233. Scandium forms no coloured ions yet is regarded as a transition metal. Why?
- 234. Why oxoanion of metal exhibit highest oxidation state?
- 235. Zinc is not regarded as a transition metal. Is it so ?
- 236. Account for the following :
 - (i) The transition elements exhibit high enthalpy of atomisation.
 - (ii) Cu(I) is not known in aqueous solution.
- 237. Silver atom has completely filled d-orbitals (4d¹⁰) in ground state. How can you say that it's a transition element ?
- 238. $E_{Cu^{2+}}^{0}$ | Cu is +positive. Account for it.
- 239. Calculate the spin only magnetic moment, meff C_0^{2+} , Fe³⁺.
- 240. Copper exhibits as $C_u^{2+}(aq)$ in solution. Why?
- 241. Mn exhibits highest O.S. of +7.
- $242. \ \ \ \ What is meant by disproportion ? Examplify with Cr(V) and Mn(VI) in aqueous solution.$
- 243. Lowest oxide of transition metal is basic while higher one is acidic. Is it so?
- 244. Name the elements of 3d–transition series with their electronic configuration. Show their stability in different O.S.
- 245. Why $CuSO_4$ is paramagnetic (Coloured) while $ZnSO_4$ is diamagnetic (colourless).

UNIT - IX

- 246. What are complex compounds? Explain the terms central metal ion, complexion, ligands co-ordination number.
- $247. \ \ Write the postulates of Werner's co-ordination co-ordination theory.$
- 248. Describe the bonding is $\left[Fe(H_2O)_6\right]^{3+}$ and $\left[Fe(CN)_6\right]^{3-}$ in terms of VBT.

249. Discuss the structure of following complexes on the basis of CFT.

- (i) $\left[Co(H_2O)_6 \right]^{3+}$ (ii) $\left[Fe(CN)_6 \right]^{4-}$
- 250. The formula $Co(NH_3)ClCO_3$ could represent a comlple that gives curdy white precipitate with AgNO₃(aq). Write the structureal formula and name it. Is it an electrolyte?

251. A comlex with composition $Cr(NH_3)_4 Cl_2$ Br provides pale yellow precipitate with AgNO₃(aq) which dissolve in conc. NH₃ forming another complex. Name both the complexes. Find out hybridisation Cr in its complex and μ_{eff} value.

- 252. Show that $\left\lceil Ni(CO)_{4} \right\rceil$ dimagnetic with respect to VBT and CFT. Is it tetrahedral?
- 253. $\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]^{2^{-}}$ and $\left[\operatorname{NiCl}_{4}\right]^{2^{-}}$ differ in their shape and magnetic property. Justify.
- 254. Show that $[Fe(CN)_6]^{4-}$ and $[Fe(H_2O)_6]^{3+}$ are of different colours is aqueous solutions. Name there complex ions.
- 255. A solution of $\left[\operatorname{Ni}(\operatorname{CN})_{4}\right]^{2^{-}}$ is colourless but $\left[\operatorname{Ni}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{2^{+}}$ is green. Give reason.
- 256. What is CFSE ? How does the magnitude of Δ_0 decide the actual configuration of d-orbitals ?
- 257. What is spectrochemical series ? Explain high spin and low spin complexes with respect to this.
- 258. What will be the correct order for the wavelenths of absorption in visible region for following:

 $\left[\operatorname{Ni}(\operatorname{NO}_{2})_{6}\right]^{4-}, \left[\operatorname{Ni}(\operatorname{NH}_{3})_{6}\right]^{2+}, \left[\operatorname{Ni}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{2+}.$

- 259. Write the formula of the following :
 - (a) Tetramine diaqua cobalt (III) sulfate.
 - (b) Tris (ethane-1, 2-diammine) chromium (III) phosphate
 - (c) Potassium hexacyanidoplatinate (IV)
 - (d) Sodium trioxalatoferrate (III)

UNIT - X

B(a). Account for the following :

- 1. Dipolemoment of chlorobenzene is lower than that of chlorocyclohexane.
- 2. Chlorobenzene is less reactive than chlorocyclohexane.
- 3. Alkylhalide though polar fails dissolve in water.
- 4. Grignard's reagent should be prepared under anhydrous condition.
- 5. HBr with propene forms 2-bromopropane.
- 6. Propene with HBr in presence of benzoyl peroxide forms 1-bromopropane.
- 7. HCl and HI fails to undergo peroxide effect.
- 8. Iiodination of alkane is carried out in presence of oxidants.
- 9. Alkyl halide with KCN (aq) gives alkyl cyanide.

10. Alkyl halide with AgCN gives alkyl isocyanide. 11. -CN and -NO₂ groups are ambident nucleophile... 12. Alkyl halide with KNO₂ gives alkyl nitrite while with AgNO₂ forms nitrocompound. 13. Arylhalide can't be produced from phenol like alkyl halide from alcohol. The reactivity of alcohols to give alkyl halide follows in the order $3^{0} > 2^{0} > 1^{0}$ 14. Alcohol in presence of acidfied (H₂SO₄) NaBr gives alkyl bromide, but KI fails 15. to give alkyliodide. 2° and 3° alcohol are are normally not used to prepare haloalkane. 16. 17. Alcohol with KI in presence of phosphoric acid (95%) gives alkyl iodide. 18. Cyanide is an ambident nucleophile. 19. Finkelstein reaction takes place in presence of dry acetone. 20. 1-Bromobutane on isomerisation gives lower boiling compounds. 21. Tertiary alkyl halides proceed through S_N -1 but not via S_N -2. 22. 2-Bromopropane with sodium ethoxide prefers substitution to elimination. (Williamson's synthesis) 23. The ease of hyrolysis of chlorobenzene depends on presence electron with drawing-NO, group. 24. (a) Friedel -Crafts reaction takes place in presence AlCl₂ (Anhyd.) (b) RS⁻ is a weaker base and a stronger nucleophile. 25. Chlorobenzene on nitriation gives p-nitro chloro benzene 26. m-Nitrochlorobenzene does not hydrolyse easily. 27. A mixture of HNO₃ and H_2SO_4 acts as nitrating agent. Chlorobenzene undergoes Friedel-Craft's reaction. 28. 29. Neopentylalcohol with HBr gives tertpentyl bromide. $(C_6H_5)_2$ CHCl easily gets hydrolysed in comparison to $C_6H_5CH_2Cl$. 30. 31. Alkyl chloride with KOH (aq) produces alcohol but with alcoholic KOH produces alkene. 32. Hexachloro benzene and benzene hexachloride are two different compounds. 33. Alkyl halide with ammonia does not yield pure amine. 34. (a) n-Propyl chloride is less reactive than allylchloride towards hydrolysis. (b) Vinyl chloride is less reactive than ethyl chloride. 35. Lower halide when treated with sodium gives higher alkane. 36. An alkyl halide can be utilised for syntehsis of desired aliphatic compound. 37. CH_3Cl is polar but CCl_4 is non-polar. 38. Melting points of dichloro benzene follow in the order $p \rightarrow o \rightarrow m$, $p \rightarrow isomer has less b.p.$ 39. C–X bond length alkyl and aryl differs. 40. Preparation of phenol from chlorobenzene [Dow's process] needs high temperature and pressure. 41. Iodination of benzene carried out in pressence of oxidant like HNO₃, HIO₃

- 42. Toluene on alkyl (methyl) substitution gives different intermediates in organic synthesis.
- 43. S_{N-1} reactions differ from S_N -2 reaction.
- 44. Hydrolysis RX is rapid with catalytic amount of KI.
- 45. Alkyl chloride is better used as industrial solvent.
- 46. SOCl, is prefered to HCl to prepare alkylhalide from alcohol.
- 47. Iodoform gives precipitate with AgNO₃ while chloroform does not

B(b). Word problem :

- (i) An organic compound with molecular formula C_8H_9Br with KOH (aq) forms another compound $C_8H_{10}O$, but with alc. KOH gives a monomer, name the polymer out of it. Provide the functional isomers of $C_8H_{10}O$ of which one turns blue litmus red.
- (ii) An alkyl bromide with mol. mass 123 gives two isomers which on treatment with alc. KOH gives alkene with same number of C. Name the compounds of isomer on treatment with KCN and then on reduction with alc. Na.
- (iii) RMgBr (A) on reaction with water gives a gas (B) which occupies 1.4L/gram at NTP. What is the product when R–Br react with benzene in persence of anhydrous AlCl₃? Identify the name of the last reaction.
- (iv) n-butane is produced by monobromination of ethane by Wurtz reaction calculate the volume of ethane required at NTP to produce 55 gram of n-butane.
- (v) Primary alkyl halide $C_4H_9Br(A)$ reacts with alc. KOH to give a compounds (B) which reacts with HBr to give (C), an isomer of (A). When (A) was reacted with Na gave a compound (D), C_8H_{18} different from the compound formed from n-butyl bromide on Wurtz reaction. Write the compounds in each steps.

B(c). Name reactions

- (i) Balz Schiemann reaction
- (iii) Sandmeyer reaction
- (v) Fitttig reaction
- (vii) Friedel Craft's reaction
- (ix) Hunsdiecker reaction
- (xi) Frankland reaction

- (ii) Gattermann's reaction
- (iv) Wurtz reaction
- (vi) Wurtz Fittig reaction
- (viii) Finkelstein reaction
- (x) Swarts reaction
- (xii) Corey-House reaction
- (xiv) Hofmann ammonolysis reaction.

B(d). What happens when

- (i) HBr adds to propene in absence and presence of organic peroxide ?
- (ii) Ethyl alcohol is treated with PCl_3 or PCl_5 ?
- (iii) Ethylalcohol is heated with I_2 in presence of red phosphorus
- (iv) Alkyl halide undergoes reduction?
- (v) Ethyl chloride is treated with silver salt of acetic acid?
- (vi) Ethyl bromide is treated with dry silver oxide?
- (vii) Ethyl iodide is treated with aqueous silver oxide ?
- (viii) Ethyl iodide is treated with KCN / Ag CN ?
- (ix) Ethyl bromide is treated with $KNO_2 / AgNO_2$?

Ethyl alcohol reacts with iodine in presence of caustic alkali? (X) (xi) Chlorobenzene is nitrated? (xii) Chloribenzene is ammoniated? (xiii) Chlorobenzene is sulphonated? (xiv) Chlorobenzene is methylated and then oxidised? (xv) Benzene is treated with chlorine in presence of U.V. light. B(e). Conversions / How can you prepare : COOH from (i) But-1-yne from ethanol (ii) 1-Nitropropane from propene (iii) (iv) Benzylalcohol from benzene (v) But-2-ene from But-1-ene (vi) Biphenyl from benzene (vii) 2-Bromopropane from 1-Bromo propane (viii) 4-bromonitrobenzene from benzene (ix) 2-phenylethanoic acid from benzylalcohol (x) Propenenitrile from ethanol (xi) Propanoic acid from ethanol (xii) Propanamine from ethyl chloride. (xiii) 1-Iodobutane from but-1-ene (xiv) Chlorobenzene from nitrobenzene (xv) p-nitrophenol from chloro benzene (xvi) Isobutyl bromide from Tert-butyl bromide. (xvii) N-methyl methanamine from methyl bromide (xviii) Ethanal from methyl bromide (xix) Benzamide from bromobenzene (xx) Cumene from chlorobenzene (xxi) Propan-1-ol from 2-chloropropane (xxii) Iodoform from isopropylalcohol (xxiii) But-2-yne from ethylbromide. UNIT - XI B(a). Word Problems : 1. An organic compound with molecular mass 46 when heated with alkaline iodine forms a yellowmass (A) which gives a hightly inflamable gas (B) on treatment with silver powder. The gas on passing through dil H₂SO₄ in presence of HgSO₄ form another compound (C) which on reduction regains the original compound. Identify the compound A to C and provide the reactions involved.

- An alcohol (A) is prepared from ethene on acidic hydrolysis. It is heated with PI₃ to give another compound (B). B with AgNO₂ gives C. 'C' with nitrous acid (NaNO₂ + HCl) forms another typical compound 'D' which gives blood red colour on being treated with sodium hydroxide. Identify compounds A to D with equation in each step.
- 3. A neutral compound (A) on treatment with Lucas reagent produces another compound (B). 'B' with (alcoholic) KOH yields compound (C), that decolorises bromine water. The compound (C) on reductive ozonolysis gives methanol only. Identify compounds A, B and C.
- 4. An organic compound A with molecular formula C_6H_6O which turns bule litmu red but foils to give effertvescence with sodium bicarbonate solution. The compound is allowed to react with CO_2 is alkaline medium at 400 K and 4 to 7 atom.pressusre to form a sodium salt which on hydrolysis gives an acid. The acid on esterification with methyl alcohol forms a compound which is a constituent of iodex.
- 5. A compound, $C_4H_{10}O(A)$ is found to be soluble in sulfuric acid. A fails to react with metallic sodium or KMnO₄ solution. When A is refluxed HI a single alkyl iodide 'B' is formed. Predict the product if 'B' undergoes Wurtz reaction. and inflamable gas (C)
- 6. An organic compound, $(A) = C_2 H_6 O$, a compound (B). The original compound with conc. $H_2 SO_4$ at 413 K gives another compound (D) $(C_4 H_{10} O)$ which on hydroiodination at 373 K gives E, E with B also gives the same compound, D

B(b). Account for the following :

- 1. Butan-1-ol on heating with conc. H_2SO_4 gives but-2-ene.
- 2. 3, 3- dimethyl but an-2-ol on elimination gives 2, 3-dimethy but -2-ene.
- 3. Excess of ethanol on acidic dehydration at 413 K gives ether.
- 4. 1^0 , 2^0 and 3^0 alcohols can be distinguished by Victor Meyer's test.
- 5. Methanol and ethanol can be distinguished by iodoform test.
- 6. Ease of esterfication follows is the order $1^0 > 2^0 > 3^0$.
- 7. Solubility of alcohols decreases on moving down the homologus series.
- 8. Among the isomeric alcohols the boiling points follow in the order $1^0 > 2^0 > 3^0$.
- 9. Acidic hydration of propene gives propan-2-ol.
- 10. o-nitrophenol is steam volatile while p-nitrophenol is not.
- 11. Phenol has higher b.p. than toluene.
- 12. Phenol is less souble in warter than alcohol.
- 13. Phenol is acidic while alcohol is neutral.
- 14. p-nitrophenol is more acidic than o-nitrophenol than m-nitrophenol.
- 15. Alcohol and phenol can be distinguish by neutral FeCl₃.
- 16. Phenol with Br₂ (Aq.) form tribromophenol but in presence of CCl₄ / CS₂ it gives pbromophenol.
- 17. Phenol with alkaline chloroform gives o-salicyaldehyde.
- 18. Phenol is a colourless substance but turns pink on exposure.
- 19. Propanol has higher b.p. than butane.
- 20. o-nitrophenol is more acidic than o-methoxy phenol.

- 21. Phenol undergoes electrophilic substitution reaction.
- 22. 3-Methylbutan-2-ol with HBr gives 2-bromo-2-methyl butane.
- 23. Alcohol can act both acid and base.
- 24. Hydration of 3-phenyl but-1-ene gives 2-phenyl butan-2-ol.
- 25. n-butyl alcohol decolorises dil $KMnO_4$ but t-butyl alcohol doesnot.
- 26. At room temperature t-butyl alcohol gives white turbidity with Lucas reagent.
- 27. Ethyl alcohol is a liquid but its isomer dimethyl ether is a gas.
- 28. p-nitrophenol is a stronger acid but p-cresol is a weaker acid.
- 29. 2, 4-dinitrophenol is soluble in sodium carbonate solution.
- 30. Phenol fails to react with HCl and PCl₃ to form chlorobenzene.
- 31. Dehydration of alcohol to alkene is carried out is presence of H_2SO_4 but not with HCl or HNO₃.
- 32. Phenol is acidic but cyclohexanol is neutral.
- 33. Phenol is easily attacked by electrophile than chloro benzene.
- 34. $CF_3 CH_2OH$ is more acidic than $CH_3 CH_2OH$.
- 35. Methanol is more polar than phenol.
- 36. Alcohol is more easily protonated than phenol.
- 37. Phenol is acidic but fails to react with $NaHCO_3$ (Aq.).
- 38. Sodium metal can be used to remove moisture from diethylether but not from ethylalcohol.
- 39. Ethanol is not dried over calcium chloride.
- 40. Phenol with alkaline CCl_4 gives salicylic acid.
- B(c). Name reactions :
 - i. Bouveault-Blanc reduction
 - ii. Hydroboration-oxidation
 - iii. Oxymercuration demercuration
 - iv. Lucas test
 - v. Dow's process
 - vi. Schotten Baumann reaction
 - vii. reimer-Tiemann reaction
 - viii. Williamson synthesis.
 - ix. Zeisel's method of estimation
 - x. Kolbe's reaction
 - xi. Coupling reaction
 - xii. Fries rearrangement.
 - xiii. Libermann's test
 - xiv. Gattermann's reaction (Formylation reaction)

B(d). Answer the following:

- 1. How can you distinguish alcohols from phenols?
- 2. Predict the stronger acid from the following pairs :
 - i) Phenol and o-cresol
 - ii) p-Nitrophenol and m-nitrophenol

iii) Phenol and cyclohexanol

- 3. Provide a distinguishing test for alcohol.
- 4. How does ether differ from alcohol?
- 5. What is pyroligneous acid?
- 6. How can you prepare ethyl alcohol from starchy materials ?
- 7. In zeisel's method for determination of $-OCH_3$ group, a sample of 2.68 gram of a compound (A) gave 14.08 gram of AgI. If the molecular mass of A is 134, the number of $-OCH_3$ grops in the compound (A).
- 8. How to get acetaldehyde from ethylalcohol?
- 9. Discuss the methods of preparation of ethylacetate from ethylalcohol.
- 10. There are three unlabelled bottles containing methylalcohol, ethylalcohol and dimethylether. How will identify each of them ?
- 11. Ethylalcohol (A) react with conc. H₂SO₄ at different temperatures to give product (B), (C) and (D).

A + conc. H₂SO₄
$$\longrightarrow$$
 $\begin{array}{c} 170^{\circ} & B \\ \hline 100^{\circ}C & C \\ \hline Excess of A \\ 140^{\circ}C & D \end{array}$

Name the compounds B,C and D.

- 12. Mention a sensitive test of alcohols.
- 13. What happens when diethylether reacts with

(i) dil H_2SO_4 (ii) conc. H_2SO_4 (iii) Acetylating reagent (iv) chlorine

14. Write the names of reagents for the preparation of following ether by Willianson's synthesis.

(i) Ethoxyethane (ii) ethoxybnzene (iii) Methoxyethane (iv) 1.property propane

- 15. Write the equation for (1) nitration of anisole (ii) bromination of anisole.
- 16. Identify the products formed on heating each of the following with HI.
 - (i) 1-methoxy-2-methyl butane (ii) 2-methyl-2-propoxybutane
 - (iii) Benzyl phenyl ether (Phenyl phenoxymethane)
 - (iv) 1-methoxy propane
 - (v) Tert butyl ethylther
 - (vi) Ethoxybenzene
 - (vii) Diphenyl ether
 - (viii) Benzylethylether
 - (ix) Benzylmethyl ether
 - (x) Benzyl tert. butyl ether
- 17. What happens phenetole is treated with a mixture (1:1) of conc. HNO₃ and conc. H_2SO_4 ?
- 18. Why can ethers be cleaved preferentially by hot conc. HI and HBr not by conc. HCl?
- 19. How can you prepare picric acid from phenol?
- 20. Name the reagent (s) used in the following reactions :

UNIT - XII

B(a) Account for the following:

- 1. Aldehydes and ketones have almost same properties.
- 2. Carboxylic acids have higher boiling point compared to alcohols comparable to mlecular mass
- 3. Acetic acid is weaker than formic acid.
- 4. Chloroacetic is stronger than acetic acid.
- 5. Nitrobenzoic acid stronger than acetic acid.
- 6. Benzoic acid stronger than p-Toluic acid.
- 7. Acetic acid is stronger than ethylalcohol.
- 8. Carboxylic acid is stronger than phenol.
- 9. I n acid catalysed reaction and acts as a base.
- 10. Sodium acetate with soda-lime gives alkane.
- 11. silver acetate on hunsdiecker reaction gives CH₃Br.
- 12. Formic acid is reducing in nature
- 13. Formic acid can be distinguished from acetic acid.
- 14. Carboxylic acid do not give characteristic reaction of >C=O group.
- 15 –COOH group in benzoic acid is meta directing.

SELFASSIGNMENT :

[Full Marks - 20]

- a. Benzaldehyde responds silver mirror test but fails to respond test with Fehling solution.
- b. Carbonyl compounds are more polar than alcohol (–OH)
- c. Dialkyl cadmium is used Grignard reagent.
- d. Hydrazones of aldehdyes and keton/es are not in acidic medium. (pH maintained).
- e. HX addes to C = C < . but not to C = O.
- f. Pure HCN fails to react with $\sum C = O$, better addes to in a alkaline reduction.
- g. Ketones are less reactive han aldehyde towards Ad_{N} .
- h. Distinguish between acetaldehyde and acetone.
- i. How can you prepare aceticacid from ethene.
- j. Prepare crotonaldehyde from ethylalcohol.

B(b) Name Reactions :

- 1. Rosenmund reduction.
- 2. Etard reaction.
- 3. Stephen's reduction.
- 4. Gatterman-Koch reaction
- 5. Friedel Craft's reaction
- 6. Aldol condensation
- 7. Popoff's rule.
- 8. Cannizzaro's reaction

9. Clemenson's reduction
10. Wolff-Kishner reduction
B(c) How can you distinguish between
1.
$$> C = C < and > C = O$$

2. acetaldehyde and actine
4. formaldehyde and acetaldehyde
5. acetaldehyde and acetaldehyde
6. formic acid and actitic acid
B(d) Conversions :
1. Acetic acid to malonic acid
2. HCCOH to CH₃COOH
3. CH₃COOH to HCOOH
4. CH₃COOH to HCOOH
4. CH₃COOH to glycine
5. Ethanoic acid to propanoic acid
6. Acetylene to benzophenone
7. HCHO to CH₃COOH
8. HCHO to CH₃COOH
9. CH₃CHO to HCHO
10. CH₃CHO to Action
B(e) Complete the missing links :
(i) CH = CH $\xrightarrow{dill_{3}SO_{1}}_{H_{1}^{C}}$ [A] $\xrightarrow{CH_{1}MgBr}_{H_{2}}$ [B] $\xrightarrow{CD_{1}O_{1}^{C}}_{H_{1}^{C}}$ [C]
(ii) CH = CH $\xrightarrow{dill_{3}SO_{2}}_{H_{1}^{C}}$ [A] $\xrightarrow{H_{1}^{C}}_{H_{1}^{C}}$ [B] $\xrightarrow{DI_{2}O_{1}^{C}}_{H_{1}^{C}}$ [C]
(iii) (CH₃) COCH₃ $\xrightarrow{-L/NH}_{A}$ A \xrightarrow{Ag}_{A} \xrightarrow{Ag}_{A} [B] $\xrightarrow{DI_{2}O_{1}^{C}}_{H_{1}^{C}}$ [C]
(iv) CH₃CHO $\xrightarrow{Ag_{2}O}_{A}$ [A] $\xrightarrow{-PC_{1}}_{H_{2}^{C}}$ [B] $\xrightarrow{-DI_{2}O_{1}^{C}}_{H_{1}^{C}}$ [D]
(v) CH₃CHO $\xrightarrow{-L_{1}AH_{1}^{C}}_{A}$ A $\xrightarrow{-Bg}_{A}$ \xrightarrow{Ag}_{A} [C] $\xrightarrow{-C_{1}H_{1}H_{2}G_{1}}_{H_{1}^{C}}$ [D]
(v) CH₃CHO $\xrightarrow{-Ag_{2}O}_{A}$ [A] $\xrightarrow{-PC_{1}}_{H_{2}^{C}}$ A $\xrightarrow{-Bg}_{A}$ $\xrightarrow{-PB}_{A}$ [C] $\xrightarrow{-M_{1}H_{2}H_{2}G_{1}}_{H_{1}^{C}}$ D
(v) CH₃CHO $\xrightarrow{-L_{1}AH_{1}^{C}}_{A}$ A $\xrightarrow{-C_{1}BH_{2}^{C}}_{A}$ [D] $\xrightarrow{-M_{1}^{C}}_{A}$
(v) CH₃CHO $\xrightarrow{-L_{1}AH_{1}^{C}}_{A}$ A $\xrightarrow{-C_{1}BH_{2}^{C}}_{A}$ A $\xrightarrow{-Bg}_{A}$ B $\xrightarrow{-PB}_{A}$ (C] $\xrightarrow{-M_{1}H_{2}H_{2}G_{1}}_{H_{1}^{C}}_{A}$ D
(vi) CH₃COOH $\xrightarrow{-L_{1}AH_{1}^{C}}_{A}$ A $\xrightarrow{-C_{1}BH_{2}^{C}}_{A}$ B $\xrightarrow{-M_{1}^{C}}_{A}$ (C) $\xrightarrow{-M_{1}^{C}}_{H_{1}^{C}}_{A}$ D
(vi) CH₃COOH $\xrightarrow{-L_{1}AH_{1}^{C}}_{A}$ A $\xrightarrow{-C_{1}BH_{2}^{C}}_{A}$ A $\xrightarrow{-C_{1}M_{2}^{C}}_{H_{1}^{C}}_{A}$ D
(vi) CH₃COOH $\xrightarrow{-L_{1}AH_{1}^{C}}_{A}$ (C) $\xrightarrow{-M_{1}^{C}}_{A}$ (C) $\xrightarrow{-M_{1}^{C}}_{A}$ (C) $\xrightarrow{-M_{1}^{C}}_{A}$ (D) $\xrightarrow{-M_{1}^{C}}_{$

6. Aromatic amines are weaker bases than aliphatic amines. Why? 7. How will you remove - NH2, - OH and - COOH group from benzene ring ? Give Example. 8. Complete the following reaction. $C_6H_5NH_2 + H_2SO_4$ Heat 9. Give one chemical test to distinguish between methyl amine and dimethyl amine. 10. (a) Predict the order of basicity of the following compounds in gaseous phase. $(CH_3)_3$ N, $(CH_3)_2$ NH, CH_3 NH₂, NH₃ Why CH₃NH₂ is less basic than ethyl amine in gaseous phase ? (b) 11. What happens when alkyl isocyanate is treated with KOH (aq)? 12. How will you distinguish between $(CH_3)_2$ NH and $(CH_3)_3$ N? Ethyl amine is soluble in water where as aniline is not. Give reason. 13. 14. Give a chemical test to distinguish between ethyl amine and aniline. 15. Methyl amine with aq. FeCl, gives reddish brown precipitated. Why? How will you distinguish 1^o and 2^o amine by Liebermann's nitroso amine reaction? 16. 17. How will you convert aniline to phenol? B(b). Write the missing compounds (A, B, C, D) $CH_3 - CH_2I \xrightarrow{NaCN} A \xrightarrow{OH^-} B \xrightarrow{KOH+Br_2} C$ (i) (ii) $C_6H_5N_2Cl \xrightarrow{CuCN} A \xrightarrow{H_3O^+} B \xrightarrow{NH_3} C$ (iii) $CH_3CH_2Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$ (iv) $C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{NaNO_2+HCl} B \xrightarrow{H_3O^+} C$ (v) $C_6H_5NO_2 \xrightarrow{Sn/HCl} A \xrightarrow{HNO_2} B \xrightarrow{C_6H_5OH} C$ B(c). Accomplish the following conversions Ethanol to methanamine (i) (ii) hexanenitrile to pentan-1-amine (iii) ethanamine to methanamine methanamine to ethanamine (iv)(v) nitromethane to dimethyl amine propanoic acid to ethanoic acid (vi) Nitrobenzene to benzoic acid (vii) (viii) Benzene to m-bromophenol **B(d).** Name reactions : Carbylamine reaction (i) Diazotisation (ii)

Hofmann's bromamide reaction (iii)Coupling reaction (iv) (v) Ammonolysis Acetylation (vi) (vii) Gabriel phthalimide synthesis UNIT - XIV (Additional questions as per original syllabus) D-glucose is an aldohexose ? Why does it react with HCN but not with NaHSO₃ ? 1. 2. What are hormones? 3. Distinguish between fibrous and globular proteins. 4. What are enzymes? 5. Define the following: related to protein: (i) peptide linkage (ii) primary structure (iii) Denaturation (b) isoelectric point 6. An optically active compound having molecular formula, C₆H₁₂O₆ is found in two isomeric forms A & B in nature. When A & B are dissolved in water they show the following equilibrium А $[\alpha]_{\rm D} = 111^0 \iff$ equilibrium mixture \implies B 52.2^{0} 19.2° Now answer the following : (i) What are such isomers called? (ii) Can they be called enantiomeers? Justify your answer. (iii) Draw the cyclic structure of isomer, A. 7. Signify DNA finger printing. 8. Answer the following : Out of sucrose and maltose, when is a reducing sugar? (i) (ii) Can denaturation of egg protein be reversed? (iii) To which class of bio-molecules, pectins belong? (iv) Name the monomer of starch. (v) Name three product which can be obtained from cellutose. (vi) Classify following into globular and fibrous proteins : insulin, haemoglobin, fibroin, collagen, myosin 9. Write notes on D, L configuration. 10. What is the basic difference between starch and cellulose? 11. α -glucose differ from β -glucose - explain. 12. Explain why glucose and fructose give same ozazone, on treatment of excess phenyl hydrazine.

13.	What are hormones? Explain its effects.				
14.	Mat	tch the following groups:			
		Group - A		Group- B	
	(a)	Riboflavin	(i)	Plant hormone	
	(b)	Thymine	(ii)	Starch	
	(c)	Cytokinin	(iii)	Ovary	
	(d)	Estrone	(iv)	Heterocyclic base	
	(e)	Diastase	(v)	Vitamin	
	(f)	ammonium sulfate	(vi)	Peptising agent	
			(vii)	Renaturation	
15.	Nar	ne the enzymes for following biological pr	oces	ses.	
	(i)	Inversion of cane sugar			
	(ii)	conversion of milk to curd			
	(iii)	Glucose to ethylalcohol			
	(iv)	Protein to peptides in stomach			
	(v)	Maltose to glucose			
	(V1)	Starch to maltose			
10	(V11) T1	Protein to aminoacid		• • • • • • • • • • • • • • • • • • • •	
16.	thos	se of cooresponding halo acids. Explain.	α-an	nino acids are generally higher than	
17.	Fist	inguish beteen RNA and DNA.			
18.	(a)	Glucose and sucrose are soluble in w sixmembered compounds are insoluble	ater v in wa	while cyclohexane, benzene being ter. explain.	
	(b)	Vitamin-C is not stored in the body, is it	?		
	(c)	Pentaacetyl derivative of glucose does n	ot ha	ve–CHO group. Explain.	
UNI	T - X	V			
1.	Hov	w is bakelite made and what is its major use	?Wł	ny it is called thermosetting polymer	
2.	Hov	w are polymers classified on the basis of fo	orces	operating between their molecules	
3.	Dist	tinguish between chain growth polymerisa	ation	and step growth polymerisation.	
4.	Distinguish between homopolymer and copolymer.				
5.	Differentiate between addition polymerization and condensation polymerization.				
6.	How is dacron prepared ?				
7.	Wh	at are natural and synthetic polymers ? Gi	ve tw	vo examples of each.	
8.	What are homopolymers and co-polymers? Give example.				
9.	Wil	l you prefer to polymerise acrylonitrile und	ler an	ionic or cationic condition? Explain	
10.	What are elastomers? Write the equation referring preparation of Buna-S				

l

UNIT - XVI

- 1. Name the action of (i) Aspirin (ii) Pencillin (iii) Phenacetin (iv) Morphin (v) Analgin (vi) Luminal (vii) Seconal (viii) Streptomycin on human body.
- 2. How synthetic detergents are better than soap?
- 3. Explain the cleansing action of soaps.
- 4. Both antacids and anti-allergic drugs are antihistamines but they cannot replace each other. Explain why?

В

- 5. Why are detergents non-biodegradable while soaps are biodegradable ?
- 6. Match the following :

Α

- (a) Ofloxacin (i) Antiseptic
- (b) furacine (ii) Bactericidal
- (c) Chlorine (iii) Tranquilizer
- (d) Veronal (iv) Disinfectant
- (e) Sodium lauryl sulfate (v) Laundry soap
- (f) Sodium rosinate (vi) detergent
- 7. What are side effect of drugs?
- 8. Explain the following with examples : Analgesics, Antipyretic.
- 9. What is the structure of chloramphenicol? What is its use for curing diseases?
- 10. What are soaps and detergents ? How do they differ ?
- 11. How do antiseptic differ from disinfectants ? How does an antibiotic differ from these two ?
- 12. What is meant by the term 'broad spectrum antibiotic'? Explain.
- 13. Indicate the difference between bathing soap and washing soap.
- 14. What are side effects of aspirin?

* * *

GROUP - B ANSWERS

(Short Answer ty	pe (2/3) mark each :
------------------	----------------------

Answer the following :

Unit - I

- 1. This means that crystalline solids have different physical properties such as electrical resistance or refractive index in different directions. This is because of different arrangement of particles in three dimensions.
- 2. Radius ratio : It is the ratio of radius of cation to that of anion in ionic solids.

This ratio is fixed for a given co-ordination number. Radius ratio = $\frac{r_+}{r_-}$. The radius ratio

gives a clue about the structure of ionic crystal. Let us keep cation size fixed arrange different anions around it. If anion of bigger size it can be surrounded by six anion

(C.N. = 6), but if of smaller anion it can be touched with 8 anions i.e. $\frac{r_+}{r_-}$ increases

increasing the radius ratio. It has been obseved that -

r_+	C.N.	Structure	Example
0.155 - 0.225	3	Trigonal planer	B ₂ O ₃
0.225 - 0.414	4	tetrahedral	ZnS, SiO ₄ ⁴⁻
0.414 - 0.732	6	Octahedral	NaCl
0.732 - 1.0	8	Cubic	CsCl

3. Due to heating during the day and cooling at night (i.e., annealing) over a number of years, glass acquires some crystalline character and hence looks milky.

4. For face centred unit cell, radius of atom

$$r = \frac{a}{2\sqrt{2}}$$

or $a = 2\sqrt{2} \cdot r, r = 0.144 \text{ nm}$

 $a = 2 \times 1.414 \times 0.144 = 0.407 \text{ nm}$.

- 5. Frenkel defect is not found in pure alkali metal halides because the ions cannot get into the interstitial sites due to their larger size.
- 6. When ZnO is heated it loses oxygen as :

$$ZnO \xrightarrow{Heat} Zn^{2+} + \frac{1}{2}O_2 + 2e^{-1}$$

The Zn^{2+} ions are entrapped in the interstitial sites and electrons are entrapped in the neighbouring interstitial sites to maintain electrical neutrality. This results in metal excess defect. Due to the presence of electrons in the interstital void the colour is yellow.

7. In metal excess defects, such as lithium excess in LiCl, there are electrons trapped at the anion vacancies, called F-centres. These impart colour to the crystal of LiCl. The colour arises by the excitation of these electrons when they absorb energy from the visible light falling on the crystal. Thus, presence of excess Li makes LiCl pink.

8.	Consequences of Schottky and Frankel defects. The important consequences of Schottky and Frankel defects in crystals are given below :			
	(i)	Because of these defects, the electr an electric field is applied, a near hole. This creates a new hole and a process goes on and a hole moves electricity.	ical co by ion nother from o	nductivity of the crystals increases. When moves from its lattice site to occupy a r nearby ion moves into it and so on. This ne end to the other end. Thus, it conducts
	(ii)	Due to the presence of holes in th	e cryst	al, its density decreases.
	(iii)	The presence of holes also decrease the crystal becomes less stable.	es the 1	attice energy of the crystal. Consequently,
9.	CdC repla occu to So	1 on adding to AgCl introduces implied two Ag ⁺ ions to maintain electric upied by Cd ²⁺ ion and the other will chottky defect.	purity al neut be left	defect. The addition of one Cd ²⁺ ion will rality. One of the positions of Ag ⁺ will be as a hole. Thus, a hole is created similar
10.	The	crystalline and amorphous solids dif	fer fro	m one another in the following respects :
	Cry	stalline solids		Amorphous solids
(i)	In cr part regu the c	ystalline solids, the constituent icles are arranged in a definite lar order which extends throughout rystal.	(i)	The constituents are not arranged in any regular order.
(ii)	They	y have sharp melting points.	(ii)	They do not have sharp melting points.
(iii)	Crys	stalline substances are anisotropic.	(iii)	They are isotropic.
(iv)	They knife	/ undergo cleavage when cut with a 2.	(iv)	They undergo irregular breakage when cut with a knife.
11.	The	important differences between Sch	ottky a	nd Frenkel defects are given below :
	Sch	ottky defect		Frenkel defect
(i)	It i atom	s produced because of missing as or ions from their normal sites.	(i)	It is produced when some atoms or ions leave their normal sites and occupy interstitial sites.
(ii)	The lowe	presence of Schottky defect ers the density of the crystal.	(ii)	It does not affect the density of the crystal.
(111)	It is havin havin whice size.	generally exhibited by ionic solids ng high coordination number and in ch cations and anions are of equal	(iii)	It is generally exhibited by ionic solids having low coordination number and in which anions are larger in size than cation e.g., ZnS, AgCl.
12.	Volu	time of unit cell = $(a pm)^3 = a^3 \times 10^{-3}$	-30 cm^3	$:: 1 \mathrm{pm} = 10^{-10} \mathrm{cm}$
	dens	sity of unit cell (d) = $\frac{\text{mass of unit}}{\text{volume of unit}}$	cell t cell	
	Mas	s of the unit cell = (No of atoms / un	nit cell	$) \times$ mas of each atom
	Mas	s of an atom, $m = \frac{\text{atomic mass}, M}{N_A}$	-	
1				

Molarr mass = M $d(density) = \frac{Z.m}{a^3} = \frac{Z.M}{N_A.a^3}$ Now, $M = \frac{d.N_A.a^3}{Z}$ Z = 1 for cubic, = 2 for bcc and 4 for fcc lattices. 13. **Unit cell**: It is the smallest portion of a crystal lattice which, when repeated in different directions, generate the entire lattice. Characteristics: i) its dimensions along the three edges, a, b & c. The edges may or may not be mutually perpendicular. ii) angles between the edges α (between b & c) β - between a and c and γ between a & b : A unit cell is divided into two broad categories Primitive unit cell: Constituent particles are present only at the corner positions of (i) unit cell. (ii) Centred unit cell: one / more constituent particles are present at positions other than corners in addition to those at corners. The centred unit cells are of three types : (i) Body - centred unit cells : Along with corned one constituent particle at centre of the body of the unit cell (equi distance from all faces) Face centred unit cells - Here a unit cell contains one constituent particle present (ii)at centre of each face besides the ones at its corners. End - centred unit cells : Here one constituent particle is present at the centre of (iii) any two opposite faces besides the ones present at the corners. There are seven primitive unit cells : cubic, Tetragonal, orthoshomic, hexagonal, rhombohedral (Trigonal) monochlic and trichlinic. Considering the centred unit cells there are total number of 14 types of Bravais Lattices. Since Y form CCP, therefore $Y = 8 \times \frac{1}{8} = 1$ (No of atoms) 14. X occupies $\frac{1}{3}$ of tetrahedral void X = 2 × $\frac{1}{3}$ = $\frac{2}{3}$ No. of tetrahedral void = $2 \times 1 = 2$ Ratio of X and Y in the occupied = $X_{2/3}$: Y₁ for nul of the compound = X_2Y_3 15. Volume of unit cell = a^3 density = $\frac{\text{mass of the unit cell}}{\text{Volume}} = \frac{4 \times \frac{99 \,\text{gram mol}^{-1}}{6.02 \times 10^{23} \,\text{mol}^{-1}}}{3}$

Volume of the unit cell = $\frac{4 \times 99 \text{ gram}}{6.023 \times 10^{23} \times 3.4 \text{ gram cm}^{-3}}$ = $19.34 \times 10^{-23} \text{ cm}^{3}$ 16. $d = \frac{Z \times M}{a^{3} \times N_{A}}, \quad z = \frac{d \times a^{3} \times N_{A}}{M}$ = $\frac{10 \text{ g/ cm}^{-5} \times (3 \times 10^{-8})^{3} \text{ cm}^{-5} \times 6.023 \times 10^{23} \text{ mol}^{-1}}{81 \text{ g/ mol}}$ = $\frac{27 \times 6.023}{81} = 2$

 \therefore It has a bcc structure.

17. For face centred unit cell, radius of atom,

$$r = \frac{a}{2\sqrt{2}}, \implies a = 2 \times \sqrt{2} r$$

= 2×1.414×0.144 nm
= 0.407 nm

- 18. Frenkel defect is an interstitial defect. Because of larger size their accomodation in interstices becomes difficult.
- 19. It is a metal excess defect where Li is excess in LiCl. There are \overline{e} trapped at the anion vacancies, called F-centres. The transition of these $\overline{e}(s)$ on absorbing energy from the visible spectrum, emit pink colour.

$$\text{Li} + \text{Cl}^- \xrightarrow{\text{at the}} \text{Li}^+ \text{Cl}^- + \text{e}^-$$

 \overline{e} occupies the site of CF in the lattice as a result the crystal is neutral but contain excess of Li. Thus, it's a non-stochiometric defect.

- 20. Refer. answer in Group -C
- 21. (i) It is a stoichiometric (vacancy) defect.
 - (ii) Schottky defect
 - (iii) KCl, CsCl
 - (iv) Density of defective crystal decreases.
- 22. When a solid is heated, some atoms or ions may leave the crystal lattice and vacancies are created resulting vacancy defects in the crystal. since number of atoms / ions per unit volume decreases, the vacancy defects lead to decrease in the density.
- 23. Metal excess defect due to anionic vacancies.
 - When crystals of NaCl is heated is a vapour of sodium, the sodium atoms are deposited on the crystal surface. The Cl⁻ ions diffuse to the surface and combine with Na forming NaCl. This happens due to loss of \overline{e} from Na forming Na⁺, the released \overline{e} diffuse into the crystal and occupy the anionic sites. These unpair \overline{e} in the anionic site create F– centres / colour centres. When such crystal is exposed to white light emits yellow on absorption in appropriate visible zone. It becomes non-stoichiometric due to excess of

Na (Na_xCl). Neutrality is mainted due to presence of \overline{e} in place Cl⁻.

 $Na + Cl^{-} \rightarrow Na^{+}Cl^{-} + e^{-}$

24. The vacant spaces left among the incompressible lattice points or spheres in crystal lattice are called as interstitial voids. These are of two types :

i) Tetrahedral voids - Where one spherical particle in the second layer is placed above three spherical particles of the first layer, the vacant space formed among four spherical particles in contact with each other is known as tetrahedral void.

Number of tetrahedral void = 2N

N = number of close packed spheres

ii) Octahedral void : When six spherical particles are placed in two layers (three in each layer alternatively) then the vacant space present in between the six spherical particles is known as octahedral void. The size of the octahedral void = 0.414 r

The size of tetrahedral void = 0.225 r where r = radius of the sphere / Lattice points. So size of octahedral void $\approx 2 \times$ size of tetrahedral void. The number of octahedral void = N = no. of lattice points or spheres.

25. Ionic Crystal

Metallic crystal

held by non-directional bonds.

atomic kernels.

Electrostatic force of altraction among

valence electrons and atomic kernels

Due to presence of free delocalised $\overline{e}(s)$

they are good conductors in solid state.

Here the strength depends on the num-

ber of valence electrons and size of the

These are hard, malleable and ductile

- i) Ionic solid are strongly held by electro- i) static force of attraction between oppositely charged ions. Bonds are nondirectional.
- ii) Here the ions are not free to move hence ii) non-conducting in solid state.
- iii) Ionic bonds are strong due to strong iii) force of attraction between oppositely charged ions.
- iv) Ionic crystals are hard but brittle
- 26. Rock salt type structure. Features :

i) It has fcc / ccp arrangement in which CL ions occupy the corners and face centres of a cube & while Na⁺ ions are present at the body centre and edge centre / occupying the octahedral voids.

iv)

- ii) This structure has 6 : 6 co-ordination.
- iii) A unit cell of NaCl consists of four Na $^+$ ions and 4 Cl $^-$ ions.

8 CF are present on the corners and 6 CF ions on the faces i.e. $\left(8 \times \frac{1}{8}\right) + \left(6 \times \frac{1}{2}\right) = 4$

Cl⁻ions.

 $12\ Na^{\scriptscriptstyle +}$ ions are present on the edges and one $Na^{\scriptscriptstyle +}$ ions at the body centre per unit cell

$$= \left(12 \times \frac{1}{4}\right) + 1 = 4 \text{ Na}^+ \text{ ions.}$$

Examples : (a) Alkali metal halide except CsCl, NH_4Cl

(b) Oxides and sulfides of alkaline earth metals (except BeS)

(c) halides of silver (except Ag I)

27. $M = mass of atom \times 6.02 \times 10^{23}$

$$= \frac{400}{48 \times 10^{23}} \times 6.02 \times 10^{23} = 50.18 \text{ g/mole}$$

for fcc crystal, Z = 4

density = $\frac{\text{mass of the uit cell}}{\text{volume of unit cell}} = \frac{Z \times 50.18}{6.02 \times 10^{23} \times (200)^3 \times 10^{-30}}$ $\therefore 200 \text{ pm} = 200 \times 10^{-12} \text{ m}$ $= 41.67 \text{ g/cm}^3 = 200 \times 10^{-10} \text{ cm}$ Unit - II Equivalent mass of oxidant / reductant = $\frac{\text{Mol mass}}{\text{change in O.N}}$ 28. $^{+12}$ Cr₂O₇²⁻ +14H⁺ +6e⁻ \longrightarrow $^{+6}$ 2Cr³⁺ +7H₂O Equivalent mass of $K_2 Cr_2 O_7 = \frac{Mol mass}{6}$ i.e. 1 mole = 6 gram equivalent.[or] $K_2Cr_2O_7 + 4H_2SO_4 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3(O)$ 1 Mole 3×16 1 mole of $K_2Cr_2O_7 \equiv 48$ parts of Oxygen By definition 8 part of oxygen $\equiv \frac{1}{6}$ mole of K₂Cr₂O₇. 29. Vapour pressure is the pressure exerted by the vapours on the surface of its liquid (state) when both vapour & liquid are in a state of equilibrium at a given temperature. Liquid \implies Vapour. 30. Nature of the liquid : Less is the inter molecular force of attraction greater is the (i) extent of escaping from the surface i.e. more vapourisation & hence more vapour pressure. e.g. V.P. (ether) > V.p. (water) Temperature. Temperature weakens the force of attraction i.e., higher is (ii) temperature greater is the vapourisation and vapour pressure. V.P. \propto T 31. Solution of known strength is called standard solution, it hleps to standardise other. e.g. potassium permangante (aq) is standardised by oxilic acid of known strength i.e. standard oxalic-acid solution. Such solution of which the strrength (molarity/normality) remains constant i.e. it forms a stable solution never decomposes nor loses / gains water on exposure-nor sticks to weighing bottle. Here oxalic acid is called primery standard and potassium paramangnet is called secondary stanard solution. 32. Stronger is the inter molecular force of attraction less is the vapour pressure. Alcohol molecules are polar and held by stronger dipole-dipole force called H-bond while the ether molecules are less polar & held by weaker force (London dispersion force). Higher is the v.p. less is the boiling point. That is why ether has lower b.p. than alcohol. H - O (H-bonded alcohols, less extent of vapourisation less is the v.p., higher is the b.p) 33. At higher external pressure the extent of vaporisation (surface phenomenon) reduces reducing the v.p. much less than the atmospheric pressure. The boiling point increases as boiling point is the temperature at which v.p. of the liquid equals to atmospheric pressure. Less is the v.p. higher is boiling point i.e. why b.p. increases in the pressure cooker reducing the cooking time.

However, at high attitude, pressure is less on the surface of liquid increasing the extent of vapourisation and hence the v.p. Higher the vapour pressure, less is the boiling point. This is reason why it's difficult to cook on the hill top e.g. Rice, potatoo etc never boil as the boiling point of water is reduced (Less than 100°C)

- 34. (i) Nature of solute : On the principle of like dissolves like ionic compounds are soluble is polar solvents e.g NaCl in water and covalent solid dissolves in non-polar solvent. e.g. Iodine in CCl_4 .
 - (ii) Temperature : For the solute where heat of solution $(\Delta_{soln}H)$ is endothermic, the solubility increases with rise of temperature e.g. sodium chloride, sugar solubility increases with rise of temperature.
- 35. ΔT_f (Depression in freezing point) = $K_f m$

 K_{f} = molant depression constant m = molality of solution.

$$\Delta T_{f} = K_{f} \cdot \frac{W_{2}}{M_{2}} \times \frac{1000}{W_{1}}$$

$$W_{2} = \text{weight of solute}$$

$$M_{2} = \frac{K_{f}}{\Delta T_{f}} \times \frac{W_{2}}{W_{1}} \times 1000$$

$$W_{1} = \text{weight of solvent}$$

 $M_2 =$ Mol.mass of solute.

- 36. Due to tetrahedral symmetry CCl_4 is non-polar. Hence it's insoluble in water which is polar in natue due to its bent structure. Thus, these two liquids are imiscible.
- 37. A liquid starts boiling when its vapour pressure (vp) becomes equal to atmospheric pressure. v.p increases with rise of temperatur.

38. Vaporisation of solvent takes place from the surface only. In a solution the % of solvent particle on the surface decreases due to presence of non-volatile solute particles and hence escaping tendency of solvent particles or extent of vaporisation decreases. Thus V.P. (solution) < v.p (pure solvent).

39.
$$10 \text{ (wt\%)}$$
 urea \Rightarrow weight of urea = 10 gram, mol. mass of urea = 60 weight of water = 90 gram
Molality =
$$\frac{W_2}{M_2} \times \frac{1000}{W_1} = \frac{10}{60} \times \frac{100}{90} = 1.85 \text{ m}.$$

40. Let us take a solution of two volatile liquids (1 & 2) As per Raoult's law -

 $P_1 = X_1 P_1^0$ $P_1 = partial pressure of component -1 in vapour phase.$ $<math>X_1 = mole \text{ fraction of component 1 in solution}$

$$P_2 = X_2 P_2^0$$
 $P_1^0 = v.p. of component-1 (Pure).$

Total pressure, $P = p_1 + p_2 = X_1 P_1^0 + X_2 P_2^0$

$$= (1 - X_2)P_1^0 + X_2P_2^0$$
$$= P_1^0 - X_2P_1^0 + X_2P_1^0$$
$$\overline{P = P_1^0 + X_2(P_2^0 - P_1^0)}$$

This is an equation to a straight line where P is linearly related to X_2 , the mole fraction of solute with slope $(P_2^0 - P_1^0)$, the difference of vapour pressure of two miscible, liquids (1 and 2) in pure forms.

41.
$$P_1 = P_1^0.X_1$$
 $1 = CHCl_3$ $2 = CH_2Cl_2$
 $P_2 = P_2^0.X_2$
 $X_1 = \frac{25.5/119.5}{\frac{25.5}{119.5} + \frac{40}{85}} = \frac{0.213}{0.213 + 0.47} = \frac{0.213}{0.683} = 0.312$
 $X_2 = 1 - 0.312 = 0.688$
 $P = (200 \times 0.312) + (415 \times 0.688)$
 $= 62.4 + 285.52$
 $= 347.92 \text{ mm} \text{ (total pressure)}$
42. $P_{CH_2Cl_2} / P_{total} = y_1 = \frac{415 \times 0.688}{347.92} = \frac{285.52}{347.92} = 0.82$
Molefraction of $CHCl_3 = \frac{P_{CHCl_3}}{P_{total}} = \frac{0.312 \times 200}{347.9} = \frac{62.4}{347.1} = 0.18$
43. Greater is the mole fraction of a component in vapour phase greater is the volatility.

$$X_{CH_{2}Cl_{2}} > X_{CHCl_{2}}$$
 (in vapour phase)

So CH₂Cl₂ is more volatile than CHCl₃.

44. Acetone and chloroform, due to greater inter molecular force of attraction causes a non-ideal solution and vapour of the solution is less than expected (Negative deviation). The mole fraction at which it has minimum vapour pressure, it shows maximum b.p.

Such a solution is called maximum boiling azeotrope. 45. $\Delta T_{\rm B} = K_{\rm f} m$ $= 0.52 \times \frac{18}{180} \frac{1000}{100} = 0.052$, boiling point water at 1.013 bar = 100.15°C Boiling point with glucose = 100.202° C. 46. $\Delta T_f = K_f \cdot m \implies 0.40 = 5.12 \times \frac{1}{M_2} \times \frac{1000}{50}$ $\Rightarrow M_2 = \frac{5.12 \times \text{K.Kg mol}^{-1} \times 1000 \text{ gram / kg}}{0.40(\text{R}) \times 50 \text{ g}} = 256 \text{ g / mol}$ 47. The direction of osmosis (migration of solvent molecules from low concentration to high concentration being separated by semipermeable membrane) can be reversed if a pressure larger of than the osmotic pressure is applied to the solution side. Now the pure solvent flow out of the solution through spm. This reverse migration of solvent from high concentration to low concentration (fresh solvent) in called reverse osmosis. 48. $P^0 = 23.8 \text{ mm}$ 50 gram of urea = $\frac{50}{60}$ mole X_2 = Mole fraction of solute 850 gr of water = $\frac{850}{18}$ mole = $\frac{50/60}{\frac{50}{60} + \frac{850}{12}} = \frac{0.83}{0.83 + 47.2}$ $=\frac{0.83}{48.03}=0.017$ $\frac{P_0 - P}{P_0} = X_2$ (Raoult's law) $\Rightarrow \frac{23.8-p}{23.8} = 0.017$ \Rightarrow 23.8 - p = 23.8 × 0.017 $P = 23.8 - (23.8 \times 0.017)$ $= 23.8 - 0.4046 = 23.3954 \,\mathrm{mm}$ of Hg. = vapour pressure of the solution. Relative lowering of v.p = $\frac{23.8 - 23.954}{23.8} = 0.017$ $\pi = 2.57 \times 10^{-3}$ bar, v = 200 cc = 0.2 litre 49. L.atm mol⁻¹ K⁻¹ T = 300 K R = 0.082 $\pi = CRT$ $=\frac{n}{V}\times RT = \frac{W}{M}\times \frac{RT}{V}$

$$M = \frac{W}{\pi} \times \frac{RT}{V} = \frac{126g \times 0.082 \ \mu \text{ atm} \text{ mol}^{-1} \ \mu \text{ s}^{-4} \times 200 \ \text{ k}^{-4}}{2.57 \times 10^{-3} \text{ atm}^{-5} \times 0.2 \ \mu}$$

$$= \frac{1.26 \times 0.082 \times 300}{2.57 \times 10^{-3} \times 0.2} \text{ g mol}^{-1}$$

$$= \frac{30.996}{0.000514} = 60303.5 \text{ g / mol}$$
50. $\pi = \frac{W}{M} \times \frac{RT}{V}$

$$= \frac{1 \text{ gram} \times 0.082 \ \text{ L} - \text{ atm} \text{ mol}^{-1} \ \text{K}^{-1} \times 310 \ \text{K}}{185000 \ \text{g mol}^{-1} \times 0.450 \ \text{L}}$$
.(atm)
$$= \frac{1 \times 0.082 \times 310}{185000 \ \text{g mol}^{-1} \times 0.450 \ \text{L}}$$
.(atm)
$$= \frac{1 \times 0.082 \times 310}{185000 \ \text{g mol}^{-1} \times 0.450 \ \text{L}}$$
.etm)
R = 8.314 m³.Pa, K⁻¹ mol⁻¹
1 atm = 101325 Pa.
51. Application of Henry's law :
i) In the production of carbonated beverages : To increase the solubility of CO₂ in soft drinks, soda water, beer or champagne, the bottled are scaled under pressure. On opening the bottle, effervescence of CO₂ takes place on reduction of pressure.
i) In the production of carbonated beverages : To increase the solubility of CO₂ in soft drinks, soda water, beer or champagne, the bottled are scaled under pressure.
On opening the bottle, effervescence of CO₂ takes place on reduction of pressure.
i) In deep sea diving (Scuba diving) the divers breathed compressed air from the trank. The nitrogen pressent in it dissolved in blood and other body fluids under pressure in the deeper sea water. When the diver coreases with rise of pressure.
52. 0.195 m i.e. 0.195 m of H₂S dissolved in 1 Kg of water.
moles of H₂S = 0.195, moles of water = $\frac{1000}{18} = 55.55$
moles of Mater = $\frac{1000}{18} = 55.55$
mole fraction of H₂S = $\frac{0.195}{55.55 + 0.195} = \frac{0.195}{55.745} = 0.0035$
Pressure - 1. bar
 $P = K_{H} X_{2} \qquad X_{2} - mole fraction of solute (H_{2}S)$
 $K_{H} = \frac{1}{0.0035} \text{ bar} = 285.7 \text{ bar}$
53. According to Racult's law, relative lowering of vapour pressure is equal to mole fraction of solute.
 $\frac{P_{0} - P_{0}}{P_{0}} = X_{2} = \frac{n_{2}}{n_{1} + n_{2}} \qquad n_{1} = moles of solute$

So it depends on quantity of solute particles present in the solution. Hence it's a colligative property, not depending on nature of the particles.

54. When ethyl alcohol and cyclohexane are mixed, the solution formed shows positive deviation from Raoult's law. In this case V.P. of the solution is more than expected for the solution behaving to be ideal. The addition of cyclohexane will tend to break some of the H-bond as a result the intermolecular force of attraction decreases, increasing the extent of vaporisation of alcohol and the v.p. increases.

 $P_A > P_A^0.X_A$, the solution will show positive deviation from Raoult;s law.

- 55. (i) Vapour pressure of solution is less than that of pure solvent. Less is the vapour pressure greater is the depression in freezing point.
 - (ii) a. For Non-electrolyte- non volatile solute :

 $\Delta T_{f} = K_{f}m$

 $K_{\rm f}$ is the molal depression (Cryoscopic) constant.

 $\Delta T_{\rm f} \propto m$

As it's proportional to molality of the solution, it is a colligative property. ΔT_f changes with no moles of solute per Kg of solvent. More is the solute more is the depression is freezing point.

b. For solute undergoing dissociation or association in a given solvent.

 $\Delta T_{\rm f} = i \ K_{\rm f} m \ \text{ where 'i' is the van't Hoff factor.} \quad i > 1 \ \text{for electrolyte}$ undergoing dissociation and i < 1 for electrolyte (solute) undergoing association. solute undergoing dissociation cause greater lowering of freezing point as no. of particles increases. e.g. saline water freezes at lower temperature. The V.P. also gets reduced.

56. Solutes may be of there types :

(i) non electrolytes (i=1)

- (ii) electrolytes under going dissociation e.g.. NaCl in water . (i > 1)
- (iii) electrolytes undergoing association e.g benzoic acid in benzene solvent (i<1)

For particles undergoing dissociation, the particles increases inceasing the colligative property and decreases the molecular mass as colligative property is reciprocal of molecular mass.

e.g. the elevation of b.p. of one molar NaCl (i=2) is double to that of 1 molar urea (i=1). So molecular mass of NaCl if measured by elevation of b.p. i.e. ebullioscopy is found to be halved (i.e. 29.25 instead of 58.5)

In case of association the number of particles decreases and hence molecular mass increases.

57. Significance K_{H} (Henry's law constant)

i) **Nature of gas :** Different gases have different values of K_{H} . Thus K_{H} is a function of nature gas. Higher the K_{H} value at a particular temperature, lower is the solubility of the gas in the liquid as $p = K_{H} x$, p = partial pressure of the gas in vapour phase.

x = mole fraction of the gas in solution

Exampe. $K_{H}(CO_2) \le K_{H}(N_2)$

i.e. CO_2 is more soluble in water than N_2

Temperature : K_{H} value increases with increase of temperature, indicating that ii) the solubility of gases decreases with rise of temperature. $K_{\rm H}(O_2 \text{ at } 293) = 34.86 \text{ kbar}$ e.g. $K_{\rm H}^{''}$ (O₂ at 303) = 49.82 kbar Henry's law: Mole fraction of $CO_2 = \frac{P_{CO_2}}{K_{...}(CO_2)}$ 58. $K_{\rm H} = 1.67 \times 10^8 \text{ Pa} = \frac{1.67 \times 10^8}{101325} \text{ atm} = 1.648 \times 10^3 \text{ atm}$ $X_{CO_2} = \frac{2.5 \text{ atm}}{1.648 \times 10^3 \text{ atm}} = 1.52 \times 10^{-3}$ $n_{H_{2}O}$ (moles of water) = $\frac{500}{18}$ = 27.78 mol (500m $\ell \approx 500$ g) $X_{CO_2} = \frac{n_{CO_2}}{n_{CO_2} + n_{H_2O}} \approx \frac{n_{CO_2}}{n_{H_2O}} = \frac{n_{CO_2}}{27.78} \quad \therefore \quad n_{CO_2} \text{ in water is neglected}$ $n_{CO_2} = moles of CO_2 = 27.98 \times 1.52 \times 10^{-3}$ = 0.0422 mole Mass CO₂ dissolved = $0.0422 \text{ mole} \times 44 \text{ gram mol}^{-1}$ = 1.857 gram 59. (i) Ideal solution : A solution which obeys Raoult's law over the entire range of concentration (a) $(p_1 = p_1^0 \times X_1)$ (b) Here solute solvent intraction = solute - soute interaction = solvent - solvent intraction. $\Delta_{sol^n} H = 0$ (c) $\Delta_{col^n} V = 0$ (d) (ii) A zeotrope : The solutions or liquid mixtures which boil at constant temperature and can distill unchanged in composition are called azeotropes. i.e. composition in solution = composition in vapour state. In such case the components cannot be separated by fractional distillation. These are of two types: (i) minimum boiling azeotrope (Solution with positive deviation from Raoult's law) e.g. ethanol at 95%) (solution with negative deviation, $p_1 < p_1^0 x_1$) e.g. Nitric acid – water. (68%) (iii) Osmotic pressure : The excess pressure which must be applied to a solution to prevent the passage of solvent into it through a semipermeable membrane at a given temperature. Mathematically = π = CRT $= \frac{n}{V}RT = \frac{W}{M}\frac{RT}{V}$

W = weight of solute in gram

M = Mol. masses g / mol

 $R = 0.0821 \ \ell$. atm - mol⁻¹ K⁻¹ T in K and V is litre, π is atm. 60. The freezing point of water is 0°C. If temperature of the region falls below zero water turns to solid ice causing road blockage preventing transporation, vehicular movement. It needs road clearance by cutting and removing the ice blocks. Such difficulties can be avoided on sprinkling strong electrolytes like salt (NaCl). It reduces the freezing point as a result the water does not freeze at the reduced surrounding temperature. 61. Match the following : (a) Solubility of gas (ii) Henry's law Liquid - Liquid solution (iii) Raoult's law (b)Positive deviation Non-ideal solution (c) (i) (d) Desalination (v) Reverse osmosis Vapour pressure of pure water at 373 K $(P_A^0) = 760 \text{ mm Hg}$ 62. Vapour pressure of aq. solution at 373 K(P) = 750 mm HgAccording to Raoult's law $\implies P = X_1 P^0$ (Solvent) $X_1 = \frac{p}{p_1^0} = \frac{750}{760} = 0.987$ X_{2} (solute) = 0.013. (Mole fraction of solute) $X_2 = \frac{n_2}{n_1 + n_2} \approx \frac{n_2}{n_1} = \left(\frac{W_2}{M_2} \times \frac{M_1}{W_1} \times \frac{1000}{1000}\right)$ $\Rightarrow X_2 = m \frac{M_1}{1000}$ Molality of solution: $m = \frac{W_2}{M_2} \times \frac{1000}{W_1}$ $0.013 = m \times \frac{18}{1000} \Longrightarrow m = \frac{0.013 \times 1000}{18}$ = 0.72 mUnit - III **Electro chemical cell Electrolytic cell** 63. i. It is a device where redox reaction is carried indirectly & the decease i. It is a device which converts in free energy appears as electrical electrical energy to chemical energy. energy. Chemical decomposition on passage of electricity. ïi. The redox reaction is spontaneous. The redox reaction is nonïi. spontaneous & takes place on

- Two electrodes are set up in different vessels with different electrolytes connected through salt bridge or porous partition.
- iv. Two electrolytes. The salt bridge also contain another electrolyte.

supply of electrical energy.

Only one electrolyte is taken.

single electrolyte.

iii.

iv.

Both electrodes are immersed in

v. In this cell anode is +ve and
cathode is -ve.
vi. The electrons are supplied from
external battery enter at cathode
move through electrolyte and
comes out at anode.

64. Cell potential = Electrode potential of cathode –
Electrode potential of anode.
Sum of the electrode potentials
= Oxidation potential of anode + reduction potential of cathode.
In standard state :
$$E_{cat}^0 = E_{catbode}^0 - E_{anode}^0$$
.

Example for Daniell cell, $Zn \left| \frac{Zn}{2n} (IM) \right| Cu \left| \frac{Cu}{2n} \right| \frac{Cu}{2n} = +0.34 - (-0.76) = 1.10V$

65. Electro chemical series is the arrangement of electrodes in order of increasing electrode
(reduction potential have higher reduction potential.

 $Cu + 2\Lambda_B^0 NO_3 \longrightarrow Cu (NO_3)_2 + 2\Lambda_B^0$
 $E_{asi}^0 Ag > E_{Cu^{-1}Cu}^0 + 2R_{asi}^0 Ag$
(i) Salt bridge completes the inner cell circuit by migration of ions as it connects two
electrolytes.

(ii) A salt bridge prevents transference of electrolyte from one electrode vessel to
another.

(iii) Salt bridge requests larger of electrolyte from one electrode vessel to
another.

(iv) It climinates liquid junction potential (Cj)

67.

[177]

In this case copper sulfate solution is taken in a copper vessel (cathode). ZnSO₄ solution is taken inside porous pot in which zinc rod is dipped (anode). This porous pot is placed in the copper sulfate solution. Anode $Zn \rightarrow Zn^{2+} + 2\overline{e}$ (oxidation) Cathode $Cu^{2+} + 2\overline{e} \rightarrow Cu$ (reduction) 68. Let us take a general cell of the types $aA_{(Aq)} + bB_{(Aq)} \longrightarrow cC_{(Aq)} + dD_{(Aq)}$ Considering the free energy change $\Delta G = \Delta G^{0} - RT \ln \frac{\left[C\right]^{c} \left[D\right]^{a}}{\left[A\right] \left[B\right]^{h}}$ $= \Delta G^0 - RT \ln Q$ Q = reaction quotient. At equilibrium $\Delta G = 0$ $\Rightarrow 0 = \Delta G^0 - RT \ln K$ (K = equilibrium constant) Thus $-\Delta G^0 = RT \ln K$ $= 2.303 \,\mathrm{RT} \log \mathrm{K}$ \Rightarrow nFE⁰ = 2.303 RT log K $\log K = \frac{nFE^0}{2.303\,RT}$ $E^0 = \frac{2.303 \,\text{RT} \log K}{\text{nF}}$ 69. (i) $E_{Fe^{3+}|Fe} = E_{Fe^{3+}|Fe}^{0} - \frac{2.303 \text{ RT}}{nF} \log \frac{[Fe]}{[Fe^{3+}]}$ $= E_{Fe^{3+}|Fe}^{0} + \frac{2.303 \text{ RT}}{nF} \log C_1 \qquad \because \quad \left[Fe^{3+}\right] = C_1 \qquad \left[Fe(s)\right] \approx 1$ (ii) $Zn + 2Ag^{+}(C_1) \longrightarrow Zn^{2+}(C_2) + 2Ag$ $E_{cell} = E_{cell}^{0} - \frac{2.303 \text{ RT}}{2F} \log \frac{\left\lfloor Zn^{2+} \right\rfloor}{\left\lceil Ag^{+} \right\rceil^{2}}$ $= E_{cell}^{0} - \frac{2.303 \text{ RT}}{2F} \log \frac{C_2}{(C_1)^2} = E_{cell}^{0} + \frac{2.303 \text{ RT}}{2F} \log \frac{C_1^{2}}{C_2}$ 70. $\Lambda_{\rm m}({\rm AlCl}_3) = 130 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ $Aeqv. = \frac{130}{3} = 43.3 \underline{ohm^{-1}cm} eqv^{-1} \qquad Eq. mass of AlCl_3 = \frac{Mol mass}{3}$

71. **Strong electrolyte** Weak electrolyte It ionises partially (in the order 1-10%) It ionises completely (100%) i. i. It consists of ions ïi. It consists of ions and undisociated ii. molecules. $\underset{0}{\overset{HA^{1}}{\longleftrightarrow}} \underset{c}{\overset{H^{+}}{\longleftrightarrow}} \underset{c}{\overset{A^{1}}{(-)}}$ $\underset{C}{\operatorname{HA}(\operatorname{Aq})} \underset{O}{\overset{\longrightarrow}{\longrightarrow}} \underset{O}{\overset{H^{+}}{\operatorname{(aq)}}} \underset{O}{\overset{+}{\operatorname{A}^{-}}} \underset{O}{\overset{(aq)}{\operatorname{(aq)}}}$ $C(1-\alpha)$ Cα Cα $\Lambda_{m}^{0} = n_{+}\lambda_{m^{+}}^{0} + n_{-}\lambda_{m^{-}}^{0}$ $\Lambda_{\rm m} = \Lambda_{\rm m}^0 - b\sqrt{\rm C}$ iii. iii. $C = molar conc^n$ of the solution. $n_{\perp} = no. of cation, n_{-} = no of anion.$ $\Lambda_{\rm m} = \alpha \ \Lambda_{\rm m}^0$ Less conductivity iv. HIgher conductivity iV. i.e. weakly conduct electricity. (Very good conductor) v. Graphicallyv. Λ Λ Λ value rises rapidly with decrease of A of strong electrolyte rises linearly with concentration. decrease of concentration and when $C \rightarrow 0$ (infinite dilution) Λ has a limiting value i.e., Λ_0 which is constant for a given electrolyte at a given temperature. 72. See text. $NaCl(fused) \rightarrow Na^+ + Cl^-$ 73. i) At anode : $Na^+ + e \longrightarrow Na$ At anode : $\operatorname{Cl}^{-} \longrightarrow \frac{1}{2} \operatorname{Cl}_{2}(g)$ ii) NaCl(Aq) $H_2O \longrightarrow H^+ + OH^-$ At cathode : $\frac{\mathrm{H^{+}}+\mathrm{e^{-}} \longrightarrow \frac{1}{2}\mathrm{H_{2}}}{\mathrm{H_{2}O}+\mathrm{e^{-}} \longrightarrow \frac{1}{2}\mathrm{H_{2}}+\mathrm{OH^{-}}}$ $Cl^{-} \longrightarrow \frac{1}{2}Cl_{2} + e^{-}$ At anode :

 $\operatorname{CuSO}_4(\operatorname{Aq}) \longrightarrow \operatorname{Cu}_{(\operatorname{Aq})}^{2+} + \operatorname{SO}_4^{2-}(\operatorname{Aq})$ iii) $H_2O \longrightarrow H^+ + OH^-$ At cathode (-) $Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$, $E^{0}_{Cu^{2+}|Cu} > E^{0}_{H^{+}|\frac{1}{2}H_{2}}$ At anode (+) 4 OH⁻ \longrightarrow O₂ \uparrow +2H₂O + 4e⁻ iv) $CuSO_4$ (Aq) taking copper electrode : At cathode - $Cu^{2+} + 2e^{-} \longrightarrow Cu$ (deposited) $Cu + SO_4^{2-} \longrightarrow CuSO_4 + 2e^{-}$ At anode -(Copper anode dissolves) v) $Ag NO_{2} (Aq) taking Ag electrode$ At cathode - $Ag^+ + e^- \rightarrow Ag$ (Cathode gains weight) $Ag + NO_3^- \longrightarrow AgNO_3 + e^-$ (Ag anode loses wt.) At anode vi) AgNO₃ using Pt-electrodes. At cathode - $4 \operatorname{Ag}^{+} + 4e^{-} \rightarrow 4 \operatorname{Ag}^{+}$ $4OH^- \longrightarrow O_2 + 2H_2O + 4e^-$ At anode vii) $H_2O \longrightarrow H^+ + OH^-$ At cathode $4 H^+ + 4e^- \longrightarrow 2H_2$ At anode $4OH^{-} \longrightarrow O_2 + 2H_2O + 4e^{-}$ Hydrogen (g) and oxygen (g) in the ratio 2 : 1 by volume. 74. Chemical equivalent is the mass discharged on passage of 1F (=96500C) of electricity or charge. e.g. 1F discharges 108 gram Ag from AgNO₃ (aq.) It is also called the equivalent mass of silver. Electrochemical equivalent (ECE or Z) i.e. the mass discharges on passage of 1 coloumb of eelctricity. Unit of Z = gram/coulombe.g. ECE of silver = 0.001119 g/CRelationship: 1 C discharges Z gram 96500(=1F) discharges $96500 \times Z = E$ (eqvt. mass) So, E = ZF (or) $E \propto Z$ (or) $\frac{E_1}{E_2} = \frac{Z_1}{Z_2}$ 75. (i) $E_{Cu^{2+}|Cu}^{0} > E_{Fe^{2+}|Fe}^{0}$ i.e. Copper ions undergo reduction. $CuSO_4 + Fe \longrightarrow FeSO_4 + Cu$

 $CuSO_4(Aq)$ is blue due to $\left[Cu(H_2O)_4\right]^{2+}$, but on reduction with Fe it $CuSO_4(Aq)$ gets discharged. (ii) NaCl is a salt of strong acid (HCl) and strong base (NaOH). Its aq. solution does not undergo hydrolysis & pH = 7 (neutral). On electrolysis [OH] inceases as H^+ gets discharged liberating $H_2(g)$, hence the solution becomes alkaline (pH > 7) $\operatorname{Na}\operatorname{Cl}(\operatorname{Aq}) \longrightarrow \operatorname{Nc}^{+}(\operatorname{Aq}) + \operatorname{Cl}^{-}(\operatorname{Aq})$ At cathode. $H_2O + e^- \longrightarrow \frac{1}{2}H_2 + OH^-$ At anode $Cl^- \longrightarrow \frac{1}{2}Cl_2 + e^-$ (i) $\overset{+2}{\text{H}_2} \overset{-2}{\text{O}_2} + O \xrightarrow{2F} H_2O + \overset{0}{\text{O}_2}$ 76. $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$ (ii) $2FeO + O \longrightarrow Fe_2O_3(1F/mole)$, $2FeO + H_2O \rightarrow Fe_2O_3 + 2H^+ + 2e^-$ (i) $Cu + 2Ag NO_3 \longrightarrow Cu(NO_3)_2 + 2Ag$ 77. $E^{0}_{Ag^{+}|Ag} > E^{0}_{Cu^{2+}|Cu}$ Ag⁺ undergoes reduction forming Ag and Cu oxidises forming Cu(NO₂), i.e. it goes into solution. Hole will be formed in copper vessel hence can't be stored. $CuSO_4 + Zn \longrightarrow ZnSO_4 + Cu$ (ii) $E_{Cu^{2+}|Cu}^{0} > E_{Zn^{2+}|Zn}^{0}$ $Cu + Zn SO_4 \longrightarrow$ No reaction (Not feasible) i.e. $ZnSO_4$ can be stored in a copper vessel. 78. Electrode potential is the tendency of the electrode to lose or gain electron. Cell potential is the sum of electrode potentials i.e. oxidation potential of anode + reduction potential of the cathode. e.g. $E_{\text{Daniell cell}} = E_{7n|7n^{2+}} + E_{7n|7n^{2$ 79. Electroplating: It is a process by which a metal gets deposited over another (conducting surface) in presence of a metal salt. The metal to be electroplated is chosen as cathode; the metal deposits on it on reduction of metal ion of the electrolyte. Objective i) Resistance to corrosion. To improve hardness and physical appearance of article ii) iii) To increase the decorative and commercial value of the article.

80.	EMF		Potential difference			
	i) EMF is the maxium potential difference between the two electrodes of the cell. When no current is drawn from the cell.	i)	P.D. is the difference of potential between any two points in a closed circuit.			
	ii) It is measured by a potentionster.iii) It is independent of the resistance of the circuit.	ii) iii)	Its value is measured by volt meter. It is proportional to the resistance between two given points.			
81.	Let us take the example of Zn-CuSO $_4$ cell.					
	_	+				
	Cell notation. $Zn Zn^{2+}(Aq) Cu^{2+}(Aq) Saltbridge$	Aq)	Cu			
	Anode (Oxidation) Cathode (redu	ction)			
 82. A reference (RE) electrode is an electrode with stable and known electrode value. It is used as a half cell to calculate the electrode potential of an unknow using a potentiometer. 			ble and known electrode potential e potential of an unknown electrode			
	Saturated calomel electrode, Hg Hg ₂ Cl ₂ (s), KCl (Satd.) = $+0.241$ V at 298 K. Standard					
	hydrogen electrode . SHE Pt, H_2 (gas -1atm-298K), $H^+(1M) = 0.0 V$					
	Calomel electrode is preferred as SHE is difficult to prepare Ag, AgCl(s), KCl also can be used as reference electrode.					
	(Potentiometer)					
	(Potentio	meter	r) —			
	R.E. — Salt bridge — U	nkno	wn electrode			
	Potentiometer (cell potential) = Electrode potential of RE + Electrode potential of unknown.					
	Thus, unknown electrode potential can be known have positive cell potetial.	wn. [Two electrodes are arranged to			
83.	$H_2O \xrightarrow{\text{electricity}} H_2 + \frac{1}{2}O_2$					
	To produce 1 mole. H_2 it needs 2 F.					
	$2H^+ + 2e^- \longrightarrow H_2$					
	$Q = I \times t$					
	$2 \times 96500C = 2 \times t(sec)$					
	t = 96500 sec					
	= 26 hours 48 minutes and 20 set	econo	1s. = 26.81 hour.			
84.	Nernst equation :	1				
	Nernst equation gave a relationship between re concentration ions at a given temperature. If st	educt andaı	on potential of an electrode and d potential in known electrode			

Let us take a general electrode: $M_{(aq)}^{n+} + ne \longrightarrow M_{(S)}$ As per Nernst equation – $E_{M^{n+}|M} = E_{M^{n+}|M}^{0} - \frac{2.302 \text{ RT}}{\text{nF}} \log \frac{\left\lfloor M \right\rfloor}{\left\lceil M^{n+} \right\rceil}$ Taking [M] = 1 $E_{M^{n+}|M} = E_{M^{n+}|M}^{0} + \frac{2.303 RT}{nF} \log[M^{n+}]$ $R = 8.31 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$ Taking T = 298 K $n = no. of \overline{e}(s)$ involved F = 96500 C $\frac{2.303 \,\mathrm{RT}}{\mathrm{nF}} = \frac{0.0591}{\mathrm{n}}$ Then $E_{_{Mn^{+}|M}} = E_{_{M^{n+}|M}}^{0} + \frac{0.0591}{n} \Big[M^{^{n+}} \Big]$ Thus Applications : (a) Calculation of cell potential: e.g. Zn-CuSO₄ cell $Zn |Zn^{2+}(C_1)| |Cu^{2+}(C_2)|Cu$ Cell equation: $Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$ Applying Nernst equation : $E_{Cell} = E_{Cell}^{0} - \frac{2.303 \text{RT}}{2\text{F}} \log \frac{\left[\text{Zn}^{2+} \right]}{\left[\text{Cu}^{2+} \right]}$ By convention [Zn] = [Cu] = 1 $= E_{Cell}^{0} + \frac{2.303 RT}{2F} log \frac{C_2}{C}$ $E_{Cell}^{0} = E_{Cu^{2+}|Cu}^{0} - E_{Zn^{2+}|Zn}^{0}$ = +0.34 - (-0.76)= 1.1 volt. Substiting the T.value, concentration of two connecting solutions emf of the cell can be calculated. At 298 K :

[183]

$$\begin{split} E_{coll} &= 1.1 + \frac{0.0591}{2} \log \frac{C_1}{C_1} \\ (b) \quad \text{Determination of equilibrium constant :} \\ K_c \text{ for the above system} &= \left|\frac{|Zn^{2+}|}{|C_n^{2+}|}\right| \\ E_{coll} &= E_{coll}^0 - \frac{2.303 \text{ RT}}{2\text{ F}} \log K_c = 0 \text{ (at equilibrium)} \\ E_{coll}^0 &= \frac{2.303 \text{ RT}}{2\text{ F}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ F}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ F}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ F}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ R}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ R}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ R}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ R}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ R}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ R}} \log K_c \\ \hline \log K_c &= \frac{n\text{F} E_{coll}^0}{2\text{ R}} \log (1000 \text{ GeV}) \\ \hline \text{Construction of Nernst equation concention of one electrode vessel is known other can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated considering other data. Knowing [H^1], \text{PH can be calculated constant constant can be calculated constant can be calculated constant (Calmode. Graphite rod surrounded by MnO_2+C. The space between the electroces is filled by moist paste of NH_c Cl and ZnCl_2. Functioning : Anode : Zn \longrightarrow Zn^{2+} + 2c^{-} Cathode : \frac{M^4}{M}O_2 + NH_4^4 + c^- \rightarrow \frac{M^3}{M}O(OH) + NH_3 Zn^{2+} + 4NH_3 \longrightarrow [Zn(NH_3)_4]^{2+} \\ \text{Pressure due to e$$

$$= -0.76 - \frac{0.0591}{2} \log \frac{1}{10^{-3}}$$

$$= -0.76 - \frac{0.0591}{2} 3.\log .10$$

$$= -0.76 - 0.0885$$

$$= -0.8485 V$$
87. $\Lambda = k \times \frac{1000}{C}$

$$= 2.4 \times 10^{-2} \text{ ohm}^{-1} \text{ cm}^{-1} \times \frac{1000 \text{ cm}^{3} / \text{L}}{0.12 \text{ gm eqvt} / \text{L}}$$

$$= \frac{2.4 \times 10^{-2} \text{ ohm}^{-1} \text{ cm}^{-1} \times \frac{1000 \text{ cm}^{3} / \text{L}}{0.12 \text{ gm eqvt} / \text{L}}$$

$$= \frac{2.4 \times 10^{-2} \text{ ohm}^{-1} \text{ cm}^{-1} \text{ cm}^{2} \text{ gram eqvt}^{-1}.$$
 $\therefore \Lambda = 200 \text{ ohm}^{-1} \text{ cm}^{2} \text{ gm eqvt}^{-1}$
88. $1.307 \text{ gram of Ag} = \frac{1.307}{108} \text{ gram eqvt}.$
i.e. $\frac{1.307}{108} \text{ gram eqvt}. \text{ of Cu will be discharged} = 0.012 \text{ gramqvt}.$
Equivalent mass of CuSO₄.5H₂O = 124.5
10 gram blue vitrio1 = $\frac{10}{124.5} = 0.08 \text{ gram eqvt}.$
 $= 0.08 \text{ gram eqvt}.$
 $10 \text{ gram blue vitrio1} = \frac{10}{124.5} = 0.08 \text{ gram eqvt}.$
 $= 0.08 \text{ gram eqvt}.$
 $1 \text{ L contains } 0.068 \times 2 = 0.136 \text{ gm eqvt} / \text{L}$
 $= \text{ cone}^{\alpha} \text{ of Cu}^{++} \text{ gram eqvt}.$
 $1 \text{ L contains } 0.068 \text{ gram eqvt}.$
 $1 \text{ L contains } 0.068 \text{ gram eqvt}.$
 $1 \text{ L contains } 2\text{ nSO}_4 = \frac{39\% \times 0.16}{100\%} = 0.048$
 $ZnSO_4 = Zn^{2+} + SO_4^{2-}$ Eq. mass $= \frac{\text{Mol.mass}}{2}$
 $1 \text{ mole of } ZnSO_4 = 2 \text{ gram eqvt}. \text{ No of moles } Zn^{2+} = 0.048 \text{ moles} = 0.096 \text{ gram}$
 $qvt.$
No of Faraday passed = No. of grameqvt discharged
 $\Rightarrow \frac{1.5 \times 230}{96500} \text{ F} = 0.00358 \text{ F} = 0.00358 \text{ gram eqvt} of Zn^{2+} \text{ gcts discharged}$

No of residual Zn²⁺ = 0.096 - 0.00358
= 0.09242 gram eqvt
Now 300 ml solution 0.09242 gram eqvt
So normality (gram eqv/L) =
$$\frac{0.09242}{300} \times 1000 = 0.31$$

i.e. Normlity of ZnSO₄ Solution = 0.31 N
= 0.155 M 1M = 2N
90. Ni \longrightarrow Ni²⁺ + 2c⁻
 $\frac{2H^{+} + 2c^{-} \longrightarrow H_{2}}{R_{eell}^{-} = 0 - (-0.236)}$
= 0.236
 $E_{cell} = E_{cell}^{0} - \frac{0.0591}{2} \log \left[\frac{Ni^{2+}}{H^{+}} \right]^{2}$ [N²⁺] = 1M
 $0 = 0.236 + \frac{0.0591}{2} \log \left[H^{+} \right]^{2}$ pH = $-\log \left[H^{+} \right]$
 $0 = 0.236 + \frac{0.0591}{2} \times 2 \log \left[H^{+} \right]$ pH = $-\log \left[H^{+} \right]$
 $0 = 0.236 + \frac{0.0591}{2} \times 2 \log \left[H^{+} \right]$ pH = $-\log \left[H^{+} \right]$
 $0 = 0.236 - 0.0591$ pH
 0.0591 pH = 0.236
 $pH = \frac{0.236}{0.0591} = 3.99$
91. no. of moles of Cu²⁺ = $\frac{100 \times 0.01}{1000} = 0.001$ mole
 $Cu^{2+} + 2e^{-} \longrightarrow Cu$
1 mole needs 2F, So electricity needed = 0.002 F
92. $2 \left[Fe^{3+} + 3e^{-} \longrightarrow Fe \right] \Delta G^{0} = 3F \times 0.036 = 0.108$ FJ
(As $\Delta G^{0} = -nFE^{0}$)
 $Fe^{2+} + 2e^{-} \longrightarrow Fe, \Delta G^{0} = 2F \times 0.44 = 0.88$ FJ
(i) $2Fe^{3+} + 6e^{-} \longrightarrow 2Fe, 0.216$ FJ
(ii) $3Fe^{2+} + 6e^{-} \longrightarrow 3Fe, 2.64$ FJ
(iii) $3Fe^{2+} + 6e^{-} \longrightarrow 3Fe, 2.64$ FJ
(iii) $3Fe^{2+} + 6e^{-} \longrightarrow 3Fe, 2.64$ FJ
(iii) $3Fe^{2+} + 6e^{-} \longrightarrow 2Fe^{2+} \longrightarrow 2Fe^{2+}$

$$\begin{split} & \Delta G^{0} = 0.216F - 2.64F \\ &= -2.424 \times 96500 \\ &= -233916 J = -233.916 kJ \\ &Fe \longrightarrow Fe^{2^{+}} + 2e^{-} \\ 93. \quad Cell equation : \frac{2H^{+} + 2e^{-} \longrightarrow H_{2}}{Fe + 2H^{+} \longrightarrow Fe^{2^{+}} + H_{2}} \\ &Applying Nernst equation - \\ & E_{call} = E_{call}^{0} - \frac{0.0591}{2} \log \left[\frac{Fe^{2^{+}}}{H^{+}} \right]^{2} \\ &= 0.44 - \frac{0.0591}{2} \log 10^{-3} \\ &= 0.44 + \frac{0.0591}{2} \times 3 \\ &= 0.44 + 0.08865 = 0.52865V \\ 94. \quad -\Delta G^{0} = nFE^{0} = 2.303RT \log K_{c} \\ & \log K_{c} = \frac{nF}{2.303RT} \qquad \left(\frac{2.303RT}{F} = 0.059 \right) \\ \hline \\ & \left[\log K_{c} = \frac{nE^{0}}{0.059} \right] \\ & NiO_{2} + 4H^{+} + 2e^{-} \longrightarrow Ni^{2^{+}} + 2H_{2}O \\ & 2C\Gamma \longrightarrow Cl_{2} + 2e \qquad n = 1 \\ Now \quad \log K_{c} = \frac{2E^{0}}{0.059} = \frac{2 \times 0.320}{0.0591} = 10.829 \\ 95. \quad Cell constant, c_{1}^{2} = \frac{Speific conductance}{Conductance} \\ &= \frac{0.146 \times 10^{-3} \text{ cm}^{-1} \text{ cm}^{-1}}{\frac{1}{1500} \text{ ohm}^{-1}} \\ &= 1500 \times 0.146 \times 10^{-3} \text{ cm}^{-1} = 0.219 \text{ cm}^{-1} \\ Molar conductance = \frac{Conductivity \times 1000}{Molarity} \\ &= \frac{0.146 \times 10^{-3} \times 10^{3}}{10^{-3}} = 0.146 \times 10^{3} \text{ ohm}^{-1} \text{ cm}^{-1} \\ &= 146 \text{ ohm}^{-1} \text{ cm}^{-1} \end{split}$$

96. The electrode to be coupled with SHE (or a reference electrode of known emf). The cell potential is measured by means of potentiometer. Cell rotation: Mg $|Mg^{2+}||H^+|(1M), \frac{1}{2}H_2(1atm), Pt$ Now $E_{Cell}^0 = E_{SHE} - E_{Mg^{2+}|Mg}^0$ $E^{0}_{Mg^{2+}|Mg} = 0 - E^{0}_{Cell}$ 97. $\Lambda_{\rm m} = \kappa \times \frac{1000}{M} = \frac{4.95 \times 10^{-5} \times 1000}{0.001028} = 48.15 \text{ ohm}^3 \text{ cm}^2 \text{ mol}^{-1}$ $\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m}^0} = \frac{48.15}{390.5} = 0.1233$ $K_{a} = \frac{C\alpha^{2}}{1-\alpha} = \frac{0.001028 \text{ mol } \text{L}^{-1} \times (0.1233)^{2}}{1-0.1233}$ $= 1.78 \times 10^{-5} \text{ mol } \text{L}^{-1}$ 98. Products on electrolysis of dil H₂SO₄ taking Pt - electrodes. (i) Electrolysis of very dil. H_2SO_4 liberated $H_2(g)$ at cathode and $O_2(g)$ at anode on discharge of H⁺(Aq) and OH⁻(Aq) respectively. (ii) Electrolysis dil $H_2SO_4(50\%)$, strong $H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$ At cathode $2H^+ + 2e \longrightarrow H_2(s)$ At anode $SO_4^{2-} \longrightarrow S_2O_8^{2-} + 2e^{-1}$ $S_2O_8^{2-} + 2H^+ \longrightarrow H_2S_2O_8$ (Per disulfuric acid) Which on hydrolysis gives hydrogen peroxide. $H - O - S = O - O - S = O + H_2O \longrightarrow H - O - O - H + 2H_2SO_4$ 99. Copper sulfate (Aq) is acidic in nature due to hydrolysis as it's a salt of strong and acid and weak base. But on electrolysis the pH increasingly decreases i.e. becomes more acidic. (taking Pt-electrodes). $CuSO_4 \longrightarrow Cu^{2+} + SO_4^{2-}, H_2O \longrightarrow H^+ + OH^+$ $Cu^{2+} + 2e^{-} \longrightarrow Cu$ At cathode, $4(OH)^{-} \longrightarrow 2H_2O + O_2 + 4e^{-}$ At anode, Discharge of OH⁻ increases H⁺ ions concentration. pH value decreases.

100. Cell notation: $\operatorname{Zn} |\operatorname{Zn}^{2+}| |\operatorname{Ag}^{+1}| \operatorname{Ag}$ $\frac{E^0}{Zn^{2+}|Zn} = 0.76 \, V \,, \qquad \qquad \frac{E^0}{Ag^+|Ag} = 0.80 \, V$ $E_{Cell}^0 = E_{Cathode}^0 - E_{Anode}$ = 0.80 - (-0.76) = 1.56 V101. Pt, $H_2 |H^+| |Cu^{2+}|Cu$, $E_{Cell}^0 = E_{Cu^{2+}|Cu}^0 - SHE$ = +ve i.e. cell is spontaneous. i.e. $E_{Cu^{2+}|Cu}^{0} = +ve value$. An electrode is assigned +ve (reduction) electrode potential if undergoes reduction on being coupled with SHE. Similarly- $Zn |Zn^{2+}| |SHE = E^0_{Cell} = SHE (= 0.0) - E^0_{Zn^{2+}|Zn}$ $E^0_{Zn^{2+}|Zn}$ must be with -ve value to have E^0_{Cell} positive and ΔG^0 negative. $\left(\Delta G^{0} = -nFE^{0}\right)$ Thus, an electrode undergoing oxidation on being coupled with SHE should have negative electrode potential value. 102. 10 gram of iodine = $\frac{10}{127}$ gram eqv. (Eq. mass of iodine = 127) quantity of electricity = $\frac{10}{127}$ Faraday = $\frac{10}{127} \times 96500$ C $=\frac{10\times96500}{127}$ amp./sec Current strength = 7598.4 amp/sec.W = Z it $= \frac{E}{96500} it$ (or) Atomic wt of Zn = 65] $W = \frac{E \text{ it}}{96500} = Z \text{ it, } z = ECE$ $i = \frac{W \times 96500}{E \times t} = \frac{10 \times 96500}{32.5 \times 2 \times 3600} = \frac{965000}{234000}$ $= \frac{96500}{2340} = 4.12$ amp/sec 103. $\frac{W_1}{E_1} = \frac{W_2}{E_2} = \frac{W_3}{E_3}$

[189]

$$\Rightarrow \frac{1.45}{108} = \frac{W_{Za}}{32.5} = \frac{W_{Ca}}{31.75}$$

$$W_{Za} = \frac{1.45 \times 32.5}{108} = 0.436 \text{ gram of zinc}$$

$$W_{cu} = \frac{1.45 \times 31.75}{108} = 0.426 \text{ gram of copper}$$
According to first law, = $W_{Au} = Z_{Au} \text{Lt}$

$$t = \frac{W_{Au}}{Z.1} \text{ Now } Z_{Au} = \frac{108}{96500} \text{ gram /C}$$
So, $t = \frac{1.45 \times 96500}{108 \times 1.5} = 864 \text{ s}$
104. Conductivity = Cell constant × conductance
Cell constant = Condictivity × resistance
= 1.29 ohm⁻¹ cm⁻¹ × 100 ohm
= 129 cm⁻¹

$$\Rightarrow \text{ Conductivity} = \frac{\text{Cell constant}}{\text{resistance}} = \frac{129 \text{ cm}^{-1}}{520 \text{ ohm}} = 0.248 \text{ ohm}^{-1} \text{ cm}^{-1}$$

$$\Rightarrow \text{ Molar conductivity} = \frac{\text{Conductivity}(k) \times 1000}{\text{Molarity}}$$

$$= \frac{0.248 \text{ ohm}^{-1} \text{ cm}^{-1} \times 1000 \text{ cm}^{2} / \text{L}}{0.02 \text{ mol}^{-1}}$$

$$A_m = 12400 \text{ ohm}^{-1} \text{ cm}^{-1}$$
105. SHE : It consists of Pt wire scaled in a gas tube & has a platinum foil attached to it. The foil is covered finally divided platinum (colloidal platinum). It is dipped inside 1M HCI i.e. [H¹] = 1M. Pure & dry H_2(g) at 298 K and 1 atm. pressure is bubbled into the solution. The surface of the foil (adsorbent) acts as a site for the cell.
Notation of the electrode (Anode) Pt.H₂|H⁺ (1M) (1 atm 298 K)
Electrode reaction (oxidation) $\frac{1}{2}$ H₂ — \rightarrow H^{*} + e⁻
Under such' condition $E_{SHE}^{0} = 0.0V = E_{\frac{1}{2}H_1H^*}^{0} = E_{W}^{1}|_{\frac{1}{2}H_2}$
Measurement of standard electrode potential . E_{Call} = oxidation potential of LHE + reduction potential of RHE. Choosing SHE = Zero, other can be calculated.

Unit - IV
106.
$$t_{0.5} = 20 \text{ days} = \frac{0.693}{k}$$

 $k = \frac{0.693}{20} \text{ day}^{-1} = \frac{2.303}{30} \log \frac{100}{X}$ X % left
 $\log \frac{100}{X} = \frac{0.693 \times 30}{2.303 \times 20} = 0.4514$
 $\log 100 - \log X = 0.4514$
 $\log X = 2 - 0.4514$
 $= 1.5486$
 $X = \text{Antilog } 1.5486$
 $= 35.37\%$

107. Factors affecting rate of reaction :

(i) Concentration of the reactant : $-\frac{dc}{dt} = kC^n$

n = order of the reaction.

(ii) Presence of catalyst : e.g. +ve catalyst initiates the reaction in forward direction.

(iii) Temperature : Increase of temperature increases the rate constant i.e. the rate increases.

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

 $k_1 =$ rate constant at temperature, T_1

 k_2 = rate constant at temperature, T_2

 E_a = Activation energy.

 $R = gas constant = 8.314 J mol^{-1} K^{-1}$

(iv) Surface area : Greater is the surface area higher is the rate of reaction.

(v) Nature of reactant. e.g.
$$NO_{(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{Fast} NO_2(g)$$

 $CO_{(g)} + \frac{1}{2}O_2(g) \xrightarrow{Slow} CO_2(g)$

Different reactants do n't proceed in the same speed.

(vi) Exposure to radiation :

e.g.
$$H_{2(g)} + Cl_2(g) \xrightarrow{h\nu} 2HCl(g)$$

108. Threshold energy is the energy possessed by the activated complex where old bond breaks and new bond forms leading to formation of product i.e. energy to have effective collisions.

$$\ln k = \ln A - \frac{Ea}{RT}$$
At temp T, $\ln k_1 = \ln A - \frac{Ea}{RT_1}$,
At temperature T₂, $\ln k_2 = \ln A - \frac{Ea}{RT_2}$,
Now $\ln k_2 - \ln k_1 = \ln \frac{k_2}{k_1} = -\frac{Ea}{RT_2} + \frac{Ea}{RT_1} = \frac{Ea}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$
i.e. $\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$
112. For first order reaction $k = \frac{2.303}{15} \log \frac{100}{80}$
 $= \frac{2.303}{15} [\log 10 - 3 \log 2]$
 $= \frac{2.303}{15} [\log 10 - 3 \log 2]$
 $= \frac{2.303}{15} [1 - 0.903]$
 $= \frac{2.303}{15} [1 - 0.903]$
 $= \frac{2.303}{15} 0.097$
 $k = 0.015 \min^{-1}$
 $\rightarrow t = \frac{2.303}{0.015} \log \frac{100}{10} = -153.5 \min.$
113. $t_{0.5} = \frac{0.693}{k}$ (involves no concentration term)
 $k = \frac{2.303}{t} \log \frac{a}{a-x}$ $a - x = \frac{a}{2}$
 $t_{0.5} = \frac{2.303 \times 0.301}{k} = \frac{0.693}{k}$
114. $t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$ $[A]_0 = initial concentration$
 $t = \frac{2.303}{6 \min^{-1}} \log \frac{5 \times 10^{-1}}{x}$ $[X] = 0.05 \mod /L$
 $t = 0.38 \min.$ $[Y \log 10 = 1]$

115.
$$-\frac{1}{2} \frac{d[A]}{dt} = +\frac{1}{4} \frac{d[B]}{dt}$$

i.e. $\frac{1}{2}$ (rate of disappearance of (A) = $\frac{1}{4}$ (rate of appearance / formation of B)
= $\frac{1}{4} \times \frac{5 \times 10^{-3}}{10}$
rate of disappeare [A] = $\frac{1}{2} \times 5 \times 10^{-4} = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{L}^{-1} \text{s}^{-1}$
rate of appearance B = $\frac{5 \times 10^{-3}}{10}$ mol $\text{L}^{-1} \text{s}^{-1} = -5 \times 10^{-4}$ mol $\text{L}^{-1} \text{s}^{-1}$
116. Depending on the rate of reactions these are of three types :
(i) Fast / instantaneous reaction. e.g. ionic reactions
(ii) Reaction of moderate rate (rate can be measured) suitably. e.g. acidic hydrolysis
of ester.
(iii) Slow reactions. e.g. Rusting, of iron.
117. (i) Positive catalyst accelerates the rate of reaction while negative catalyst slows down
the rate.
e.g. fluorination CH₄ is moderated by cobalt catalyst.
(ii) Catalyst lowers the activation energy, accelerating the rate of reaction.
(iii) Catalyst does not take part in the chemical process so it remains unchanged.
e.g. KCIO_{3(g)} $\xrightarrow{MaG_2(C)} \rightarrow KCl_{(g)} + \frac{3}{2} O_{2(g)}$
(iv) A catalyst doesnot alter Gibbs energy, AG of the reaction. It catalyses spontaneous
reactions.
118. By affecting the activation energy it activates the reacting colliding molecules to surpass
the barrier i.e. it influences the rate constant, of forward (k₁) and backward (k₂) reaction
identically i.e. K the equilibrium constants, $\frac{kf}{k_h} = K$, does not change
The decrease in activation energy (+ve catalyst) from forward decreation is same in
backward direction.
Fregress of reaction

From the plot it's clear that $(E_2 - E_1) = (E_2^1 - E_1)$

So the extent of increase in forward rate is same backward rate.

119. All collisions do n't lead to formation of product(s). The collisions in which molecules collide with sufficient kinetic nergy (i.e. threshold every) and proper orientiation so as facilitate breaking of bonds between reacting species and formation of new bonds to form products are called effective collisions.

Considering effective collision,

Rate =
$$PZ_{AB} e^{-Ea/RT}$$

 Z_{AB} = collision frequency of reactants A, B.

P = Probability or Sterric factor.

120. For general reaction, $R \longrightarrow P$, at time t_1 the reactant concentration R_1 and ' t_2 ', the concentration of reactant is R_2 . Similarly P_1 and P_2 are product concentrations at timing t_1, t_2 . Now rate of disappearance of R :

$$\frac{\left[R\right]_{2}-\left[R\right]_{1}}{t_{2}-t_{1}}=-\frac{\Delta\left[R\right]}{\Delta t}$$

is equal to rate of appearance of 'P'

i.e.
$$\frac{\left[\mathbf{P}\right]_2 - \left[\mathbf{P}\right]_1}{\mathbf{t}_2 - \mathbf{t}_1} = +\frac{\Delta\left[\mathbf{P}\right]}{\Delta t}$$

Thus, r_{av} (average rate of reaction)

$$= -\frac{\Delta[R]}{\Delta t} = +\frac{\Delta[P]}{\Delta t} = \frac{\text{change in concentration of 'R 'or 'P'}}{\text{change in time}}$$

But to express the rate at a particular moment of time is called instantaneous rate i.e. when Δt tends to zero. A tangent is drawn at a particular time to the c vs t plot. Thus,

$$r_{\text{inst.}} = \frac{-d[R]}{dt} = \frac{d[P]}{dt}$$

i.e. $t \to 0 \frac{-\Delta R}{\Delta t} = \frac{\Delta P}{t \to 0 \Delta t}$
121. $2N_2O_5(g) \longrightarrow 2N_2O_4(g) + O_2(g)$
Initial (t = 0) 0.5 atm 0 0
(0.5 - 2x) 2x atm x atm
 $P_t = p_{N_2O_5} + p_{N_2O_4} + p_{O_2}$
 $= (0.5 - 2x) + 2x + x = (0.5 + x)$
 $x = p_t - 0.5$
 $p_{N_2O_5} = 0.5 - 2x$
 $= 0.5 - 2(P_t - 0.5) = 1.5 - 2P_t$
at 100s, $P_t = 0.512$ atm.

[196]

126. $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$ rate = k $[CH_3COOC_2H_5][NaOH]$, rate depends on concentrations of both, hence second order $CH_3COOC_2H_5 + H_2O \xrightarrow{HCl} CH_3COOH + C_2H_5OH$ In HCl (aq) the rate depends on only conc. of ethylacetate. It is first order with respect to ethylacetate and zero order with respect to H₂O⁺. 127. rate of the reaction = $K [A]^x [B]^y$ $0.005 = k (0.01)^{x} (0.01)^{y}$ ----- I Thus, $.020 = k (0.02)^{x} (0.01)^{y}$ ----- II $.060 = k (0.02)^{x} (0.03)^{y}$ ------III $\frac{I}{II} = \frac{0.005}{0.020} = \left(\frac{0.01}{0.02}\right)^{x}$ $\Rightarrow \frac{1}{4} = \left(\frac{1}{2}\right)^x$ i.e. x = 2, second order with respect to 'A'. $\frac{\mathrm{II}}{\mathrm{III}} \Longrightarrow \frac{.020}{0.060} = \left(\frac{0.01}{0.03}\right)^{\mathrm{y}}$ $\Rightarrow \frac{1}{3} = \left(\frac{1}{3}\right)^{y}$, y = 1, first order with respect yo 'B'. Thus, order reaction = x + y = 3. 128. Rate of reaction Specific reaction rate i) It is the speed with which the i) It is the proportionality constant in the reactants are converted to product. rate low. $-\frac{d[A]}{dt} = k[A]$ $k = -\frac{d[A]/dt}{[A]}$ ii) It is change in concentration of ii) It is the change in concentration of reactant or product per unit time reactant / product per unit time and unit concentration of the reactant or product. e.g. $A \longrightarrow B$ dt = 1 sec, [A] = 1 mol/L $-\frac{d[A]}{dt} = +\frac{d[B]}{dt}$ k = d[A] change in concentration. - ve for reactant & +ve for formation of product. It depends on initial concentration iii) It is independent of initial concentration. iii) of the reactants

iv) Unit : mol L⁻¹ time⁻¹
iv) Its unit depends on order of reaction
e.g. for 1st order reaction it's time⁻¹.
129. Order of reaction :
(i) It is the sum of the powers of the concentration terms in the rate law expression.
(ii) It is determined experimentally.
(iii) Its value never exceeds there.
(iv) It need not be whole number, it may be fraction or even zero.
130. R
$$\longrightarrow P$$

For first order reaction, $-\frac{d[R]}{dt} = k[R]$
 $\Rightarrow -\frac{d[R]}{[R]} = kdt$
on integration: $-\ln R = kt + 1$
when t = 0, i.e. initially $-\ln R_0 = 1$ (integration constant)
substituting in the above equation:
 $-\ln R = kt - \ln R_0$
 $\Rightarrow -kt = -\ln R_0 + \ln R$
 $\Rightarrow \ln \frac{[R]}{[R]_0} = -kt$
Antilog of this - $\frac{[R]}{[R]_0} = e^{-kt}$
i.e. $[R] = [R]_0 e^{-kt}$.
131. $40(=t) = \frac{2.303}{k} \log \frac{100}{20}$
 $k = \frac{2.303}{40} 0.699$
 $t_{y_2} = \frac{0.693 \times 40}{2.303 \times 0.699} = 17.22 \min$.
132. (i) The activation energy for combustion of fuel is very high at room temperature therefore they don't burn by themselves.
(ii) Though the reacting molecules may be having energy more than E_y, yet they may not be effective due to lack of proper orientation. Energy barrier and orientation barrier must to be satisfield to have the reaction leading to product.
133. $2NH_3 \rightarrow N_2 + 3H_2$
Rate expression:
 $-\frac{1}{2}\frac{d[NH_3]}{dt} = \frac{d[N_3]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt}$,

rate of reaction =
$$k \times [NH_3]^0 = 2.5 \times 10^{-4} M s^{-1}$$

$$\frac{d[N_2]}{dt} = 2.5 \times 10^{-4} \text{ M s}^{-1}$$
$$\frac{d[H_2]}{dt} = 7.5 \times 10^{-4} \text{ M s}^{-1}$$

Unit - V

134. When a strong convergent beam of light is passed through a colloidal solution and the path of rays is viewed at right angle to the direction of propagation of light, a bright cone of scattered light is observed. The cone is called Tyndal cone and the effect of scattering light is called Tyndal effect.

Condition : i) The wavelength of light must greater than the diameter of the particles constituting dispersed phase.

ii) The difference in value of refractive indices of the dispersed phase and dispersion medium must be appreciable.

True solution particles fail to scatter the light because of smaller size than size of colloidal particles.

135. Colloidal particles of dispersed phase are equally charged either positive or negative. The particles repel each other & this is the reason as to why they do not coalesce to form larger particle. This causes Brownian motion and gives stability to the colloidal solution.

Reason for charge on colloidal particle :

(i) Due to frictional electrification:

Rubbing of dispersed phase particle with those of dispersion medium result in some charge on the colloidal particle.

(ii) Due to association of surface molecules :

eg.
$$C_{15} H_{31} COONa \Longrightarrow C_{15} H_{31} COO^{-} + Na^{+}$$

Sodium palmitate (soap)

The anions aggregate by weak attractive force to have a colloidal sized particles (associated colloid) with negative charge.

(iii) Due to preferential adsorption of ions :

The particles constituting the dispersed phase adsorb only those ions preferentially which are common with their own lattice.

e.g. Fe(OH), precipitate converts to Fe (OH), colloidal sol adding FeCl, (Aq).

$$\operatorname{FeCl}_{3} \longrightarrow \operatorname{Fe}^{3+} + 3\operatorname{Cl}^{-}$$

$$\operatorname{Fe}(\operatorname{OH})_{3} + \operatorname{Fe}^{3+} \longrightarrow \operatorname{Fe}(\operatorname{OH})_{3} \cdot \operatorname{F}_{e}^{3+} \operatorname{sol}$$

 $\mathbf{C}\mathbf{l}^{\scriptscriptstyle -1}$ ions are taken up by the dispersion medium.

136. Electrophoresis / Cataphoresis : The movement of colloidal particles (dispersion phase) not the medium under the influence of an electric field is called electrophoresis.

e.g. $[Fe(OH)_3.Fe^{3+}]$ sol on application of electric field move towards cathode (-) and coagulate on being discharged.

Applications :	i)	To findout nature of charge on colloidal particle.
----------------	----	--

Dust precipitator :- In inductrial chimney dust can be precipitated ii) by electro phoresis leaving pure air. The soots are negatively charged and stick to the +vely charged plates during electrophoreois.

Sewage disposal : Colloidal particles of dirt, mud etc. carry iii) electrical charge (-ve). Sewage water (a negative sol) passed through the plates kept at high potential, the dirt particles coagulate leaving water (medium) due to electrophoresis.

- 137. There are three types of solutions on the basis of particle size of the solute / dispersed phase particles.
 - True solution which is homogeneous one where solute particles are of size normally i) less than 1. nm.

e.g. solution of crystalloids (salt, sugar, urea etc.)

- ii) Colloidal solution. It is a heterogeneous solution where the dispersed particles are of size 1–1000 nm (diameter).
- Suspension : It is a heterogeneous mixture containing large insoluble particles. e.g. iii) muddy water.

138. Lyophilic (liqid loving) colloid / Intrinsic colloid.

There is a loving tendency between phase and medium, hence

- i) Easily prepared by simply mixing.
- ii) These are stable and not easily coagulated.
- Reversible in nature iii)
- iv) Viscosity of the sol is greater than the solvent.
- Surface tension is less than the medium. v)
- 139. Factors affecting adsorption of gas on solid.
 - Nature if the adsorbent More is the surface area more is the extent of adsorption i) e.g. catalysts are choosen in powdered form.
 - ii) Nature of the gas (adsorbate) easily liquifable gas i.e. exhibiting greater vander Waals force of attraction.
 - Heat of adsorption : More negative Δ_{adp} H more is the extent of adsorption. iii)
 - Temperature. As its exothermic the adosrption is favourable at lower temperature. iv) Higher is the T_c greater is the extent of adsorption.

v) Pressure : Extent of adsorption
$$\left(\frac{x}{m}\right)$$
 increases with rise in pressure at a constant temperature

temperature

$$\frac{x}{m} = K p^{\frac{1}{n}}$$
 (Freundlich's adsorption isotherm)

n = whole number

140. Detergent is a surafce active agent or surfactant which lowers the surface tension of the medium facilitating cleansing action. e.g. $R - \langle O \rangle$ $-SO_{2}^{-}Na^{+}$

(Sodium alkylbenzene sulfonate)

	It als remo	It also fucntions as an emulsifier reducing inerfacial tension between fat and water thus removing fat along with dirt from fabric.			
141.		Colloidal solution True solution			
	i)	Hetergeneous	i)	Homogeneous (a single phase)	
	ii)	Particle size 1–1000 nm	ii)	Particle size less than 1 nm.	
	iii)	Opaque	iii)	transperent	
	iv)	Coagulate	iv)	never settle	
	v)	Shows Tyndal effect	v)	Does not show	
	vi)	Undergo electrophoresis	vi)	If the solute is an electrolyte, true solution	
				undergoes electrolysis.	
142.	Colle num on n	Colloidal solution shows small value of colligative properties due to bigger size, the number of particles is small in comparision to true solution. Colligative properties depend on number of particles.			
143.	River water is muddy and carries colloidal dust particles which are charged. Sea water contains a large number of electrolytes. When river comes in contact with the sea water, colloidal particles get discharged by oppositely charged ion of the electrolyte present in sea water and are coagulated (settled). Over the time a hard solid deposit of delta in formed.				
144.		Homogeneous catalysis		Heterogeneous catalysis	
	\rightarrow	Catalyst functions in the same phase	;	 Here Catalysts are in different 	
		as that of reactants.		phases (generally solid state)	
	\rightarrow	It proceeds through different steps		 It proceeds through adsorption theory 	
		with approved mechanism		theory.	
	2S	$O_2 + O_2(g) \xrightarrow{NO(g)} 2SO_3(g)$	H ₂₍	$_{g}$ + CH ₂ = CH ₂ (g) $\xrightarrow{\text{Ni(s)}}$ CH ₃ - CH ₃ (g)	
	Mechanism.			Reaction takes place on the catalytic surafce	
	$2H_2O + NO \longrightarrow HNO_3 + 3H$				
	2HN	$NO_3 + 2SO_2 \longrightarrow 2SO_3 + NO + NC$	$P_2 + I_2$	H ₂ O	
	Berz	elius mechanism :			
		$2NO + O_2 \longrightarrow 2NO_2$			
		$SO_2 + NO_2 \longrightarrow SO_3 + NO_3$)		
	NO	reappeared.			
	In solution :				
	CH ₃	$COOC_2H_5 \xrightarrow{H^+} CH_3COOH + C_2$	H ₅ O	Н	
	_	Catalyst is involved in chemical reac	tion.	Catalyst adsorbs the reactants &	
				new chemical bond is formed.	
	\rightarrow	Faster		\rightarrow slower	

145. Selectivity of catalyt : It is the ability of the catalyst to direct a reaction to give specific product. Selectivity of different catalysts for the same reactants is different. e.g. CO and H₂ (water gas) with different catalyst gives different product. $CO_{(g)} + 2H_{2(g)} \xrightarrow{Cu/ZnO-Cr_2O_3} CH_3OH(g)$ (i) (ii) $CO_{(g)} + 3H_{2(g)} \xrightarrow{Ni} CH_4(g) + H_2O(g)$ $CO + H_2(g) \xrightarrow{Cu} HCHO(g)$ (iii) 146. Hardy-Schultze rule According to it The ions carrying charge opposite to that on sol particles are effective in causing (i) the coagulation of the sol. These are called active ions. e.g. Negative sol (A_2, S_3) can be cogulated in the decreasing order of the charge of cation i.e. $Al^{3+} > Mg^{2+} > Na^{+}$ The flocculation value increases in the order : $Al^{3+} < Mg^{2+} < Na^{+}$ The coagulating power of an electrolyte is directly proportional to valency of the (ii)active ion. e.g. To coagulate +ve sol e.g. Fe $(OH)_2$. Fe³⁺ $\left[\text{Fe}(\text{CN})_{6} \right]^{4-} > \text{PO}_{4}^{3-} > \text{SO}_{4}^{2-} > \text{Cl}^{-}$ More is the coagulating power smaller is the flocculation value of an electrolyte. (iii) Not only electrolytes, when equimolar proportions of two oppositely charged sols are mixed they mutually neutralise their charge and both gets coagulated. 147. Colloid is the state of substance as it depends on particle size (1–1000 nm), if the particle size falls less than it changes to crystalline state. 148. A catalyst may be defined as the substance which when present in the chemical reaction accelerate (in case of +ve catalyst) the speed and recovered unchanged in amount and chemical character when reaction is over. The chemical process involving the catalyst is called catalysis. **Characteristics:** (a) It can't initiate the reaction but accelerate the rate of reaction i.e. it can catalyse the spontaneous reaction with negative ΔG . (b) Small amount of catalyst is sufficient to catalyse a particular reaction. (c) Its quantity (mass), chemical property remain unchanged after the reaction. It may however, undergo certain physical changes such as state, colour, structure etc. (d) A particular catalyst is not in a position to catalyse all reaction. It is specific in nature. (e) It is more effective in finely powdered form / colloidal form due to increase of surface area. Catalyst lowers down the activation energy accelerating both forward and backward (f) rate equally as a result equilibrium constant (K) remains unchanged but equilibrium is reached quickly.

149. Modern Adsorption theory:

- The mechanism follows five steps such as :
- (i) Diffusion of reactants to the surface of the catalyst (adsorbent).
- (ii) Some association (adhering) of reactants to the surface of the catalyst (adsorption)
- (iii) Occurrence of chemical reaction on the catalyst's surface through formation of intermediate.
- (iv) Desorption of product from the catalyst surface and there by making the surface available again for more reaction to occur.
- (v) Diffusion of reaction products away from the surface of the catalyst. The surface of the catalyst has free valencies which provide the seat for chemical forces of attraction.

Merit & limitations. This theory explains why the catalyst remains unchanged in mass and chemical composition at the end of the reaction and effective even in small quantities.

- It fails to explain the action of catalytic promoters and catalytic poisons.

150. According to Gibbs-Helmholtz equation, $\Delta G = \Delta H - T\Delta S$. On being adsorbed the disorderdness decreases i.e. $\Delta S = -ve$, Now, ΔG the free energy change must also be negative incase adsorption to take place. As $(-T\Delta S)$ is positive at a given temperature, ΔH must be negative to have adsorption spontaneous, $\Delta G = -ve$. Thus, the adsorption process is exothermic nature.

 $\Delta G = \Delta H - T\Delta S$ -(ve) (-ve)

 \rightarrow Further, adsorption arises because of attraction between particles or molecules of adsorbent and adsorbate. This follows decrease of energy in the system i.e. exothermic in nature.

151. Boiling washing soda, $Na_2CO_3 + H_2O \xrightarrow{boil} 2NaOH + CO_2$ sodium hydroxide formed on hydrolysis react with fat (triglyceride) to form soap and glycerol by saponification reaction. Fats get disposed in water by emulsification (soap- emulsifying agent) and helps in cleaning, the pan.

CH ₂ COOR		$CH_2 - OH$
CHCOOR	$+3$ NaOH \longrightarrow 3 RCOONa +	CH-OH
CH ₂ COOR	Soap	$ _{CH_2} - OH$
Fat		glycerol

- 152. Blood is a colloidal system consisting of the positively charged particle, haemoglobins (Hb). When it (blood) comes in contact with an electrolyte, the charge gets discharged by– vely charged part of the electrolyte and blood clots on coagulation.
- 153. The charge on the colloidal particles depend on preferntial adsorption of the ions from the electrolyte that are common with their own lattice ions. When silver nitrate solutin is added with excess KI aqueous, I⁻ adsorbs on the surface of yellow AgI precipitate and makes it a –ve sol.

$$AgI + KI \longrightarrow \begin{bmatrix} AgI \end{bmatrix} I^{-} + K^{+} \\ (fixed part) & diffused part \end{bmatrix}$$

When KI (aq) is added to Ag NO_3 , positively charged Ag⁺ ions are adsorbed from the electrolyte & colloidal particles acquire +ve charge i.e. a positive sol is formed.

$$AgI + AgNO_3 \longrightarrow [AgI]Ag^+ : NO_3^-$$

fixed part diffused part

154. Colloidal solutions are generally coloured on account of scattering of light by the particles of the dispersed phase. i.e. colloidal particles. Since the particles in different colloidal solution differ in sizes, they impart specific colours to these solutions on passing light. e.g. colour of gold sol is red, on increasing the particle size the solution colour changes to purple, blue & finally becomes golden yellow. As the particle size changes the

wavelength of scattered light also changes resulting in different colours.

155. The Fe(OH)₃ solution prepared by the hydrolysis of FeCl₃ has a positive charge because it preferentially adsorbs Fe³⁺ions on its surface from solution.

 $\operatorname{FeCl}_3 \longrightarrow \operatorname{Fe}^{3+} + 3\operatorname{Cl}^{-}$

$$\operatorname{Fe}(OH)_{3} + \operatorname{Fe}^{3+} \longrightarrow \operatorname{Fe}(OH)_{3} \cdot \operatorname{Fe}^{3+} (\operatorname{sol}).$$

Cl⁻ ions are taken up by the dispersion medium. Fe³⁺ acts as peptising agent.

156. When H_2S gas is passed through an aqueous soluton of SO_2 , colloidal sulfur is formed on oxidation of H_2S or S^{2-}

 $2H_2S + SO_2 \longrightarrow 2H_2O + 3S$ (Colloid)

The sol looks yellow due to dispersion of sulfur.

57.	Exa	mple	Phase	Medium	System	
	(i)	Smoke	C-particles	air (gas)	Aerosol of solid.	
	(ii)	FOG	liquid	air (gas)	Aerosol of liquid.	
	(iii)	cheese	liquid	solid	Gel	
	(iv)	milk	liquid	liquid	emulson (oil/water)	
	(v)	cream	liquid	liquid	W/O	
	(vi)	Soaplather	gas	liquid	Foam	

158. Adsorption (Physical) of a gas on surface of solid is exothermic in nature.

Solid + gas \implies Gas adsorbed + heat

When temperature inceases, the equilibrium shifted in the backward direction to cancel the effect of increase of temperature as per Le-chatelier's principle. Consequently, physisorption decreases with rise of temperature. It is favoured at low temperature & high pressure.

159.	Lyophobic colloids :					
	(i)	It is formed by special methods.				
		e.g. metal sols are formed by Bredig's arc method.				
	(ii)	It is irreversible.				
	(iii)	As unstable easily gets coagulated.				
	(iv)	Viscosity is same as that of dispersion	n mediur	n.		
	(v)	It exhibits Tyndal effect.				
160.	Mu	lti molecular colloids		Macromolecular colloids		
	(i)	The particle size is less than colloidal range range (1 nm)	(i)	The particle size falls in colloidal (1–1000 nm)		
	(ii)	They exist as aggregate of smaller (Polymeric) particles	(ii)	These are already macromoelcular in nature.		
	(iii)	Mostly lyophobic colloids	(iii)	These are mostly lyophilic colloids.		
		e.g. gold sol, sulfur sol (S_8) etc.		e.g. starch, cellolose, proteins, nylon		
	(iv)	Molecular masses are not high	(iv)	Molecular masses are high.		
161.	Asso	ociated colloids : Characteristics :				
	(i)	Micelles are formed in dispersed pha	ase.			
	(ii) These behave as strong electrolyte at low concentration but colloidal at higher concentration i.e. above a particular concentration called CMC (critical micelle concentration) and above a particular temperature called Kraft temperature. T					
	(iii)	It lowers surface tension and raises the visocity of water.				
	(iv)	Their molecules contain both lyophilic and lyophobic groups e.g. $C_{15} H_{31} COO^-$ Na ⁺ .				
	(v)	vander Waals force increases with in	crease of	concentration.		
162.	Enz	zymes are nitrogeneous compounds / proteins produced by living system and catalyse				
	certa	tain biological reaction. Hence these are called biocatalysts.				
	\rightarrow	Without these living process would be too slow to sustain life.				
	\rightarrow	 Like other catalysts these are species and highly efficient. e.g. (a) one molecule of carbonic anhydrase enzyme in RBC can catalyse the decomposition of about 36 million molecules of carbonic acid in one minute. 				
	$H_2CO_3 \xrightarrow{\text{carbonicanhydrase}} CO_2 + H_2O$					
	(b)	$C_{12} H_{22} O_{11} (Sucrose) \xrightarrow{Invertase} glu$	ucose + f	ructose		
163.	i)	Haber's process (e)	Finely di	vided Fe-Mo (promoter)		
	11) ,	Ostwald process (c)	Pt- at 5^{\prime}	3 K		
	111))	Contact process (a)	$V_2 O_5 (s)$) 51. at 772 V		
	IV)	chlorine	(b) Cu	L_1 at 7/3 K		
	v)	Bosch process to manufacture H_2	(f) ferr	ic oxide – Cr_2O_3 (promoter)		
	vi)	Hydrogenation of oil to ghee (d)	Finely di	vided Ni		

Unit	- VI				
164.	(i)	Ore is a mineral of the metal from which metal can be extracted / isolated easily			
	and	nd economically. Mineral is the compound of the metal.			
	e.g. FeS and $FeSO_4$ are minerals of iron where FeS mineral is an ore. Thus, all ores are				
		minerals but all minerals are not ores.			
	(ii)	An alloy is a solid - solid solution of more than one Metal. This is homogneous. e.g.			
		Brass ($Cu + Zn$). Amalgam is an alloy if mercury in one of the components e.g. Zn-			
	<i>(</i>)	Hg (Zinc amalgam)			
	(111)	Flux is a substance added during smelting to remove the impurities. If impurity is			
		out first leaving the molten metal as slag has lower density			
		$P_2O_5 + 3CaO \longrightarrow Ca_3(PO_4)_2$			
		impurity(acidic) (Basic flux) Slag			
	(iv)	Roasting-Smelting:			
		Roasting is a process of heating the concentrated ore in excess of air in reverberatory			
		furnace at a temperature insufficient to melt it. (below the m.p. of the metal)			
		2FeS + 3O ₂ \longrightarrow 2FeO + 2SO ₂ \uparrow			
		iron pyrite			
		Smelting: It is a process to extract the metal reducing the oxide of the metal with			
	suit	able reducing agent (say-carbon) in presence of flux which combine with impurities,			
	rem	oved as fusible slag from the lower part of the blast furnace.			
165.	Mat	ching: Sodium ——— Rock salt			
		Magnesium — Epsom			
		Aluminium — Cryolite			
		Iron — Limonite			
166.	(i)	Mercury — Liquation			
	(ii)	Nickel — Mond's process			
	(iii)	Titanium — van Arkel process			
	(iv)	Aluminium — Hall and Heroult electrolytic process.			
167.	Ma	gnetic separation process :			
	Her	e ore particles or gangue is magnetic in nature. e.g. (i) ores of iron haematte, (Fe ₂ O ₃),			
	mag	gnetite (Fe ₃ O_4), siderite (Fe ₃ O_3) subjected to rotating magnet – wheel/roller, the			
	imn	urity will be repelled to another point			
	шр	(ii) Concentration of casseterite (SnO) ore is non-magnetic while gangue			
	part	(ii) Concentration of cusseterine $(Silo_2)$ or is non-magnetic while gauge			
168.	Lea	ching is a process of concentration of the ore where ore gets dissolved in the leaching			
	agent but not the gangues.				
	(i)	Baeyer's process : Ore is digested with custic soda at 150°-170°C.			
		Red Bauxite, Al ₂ O ₃ . $2H_2O + 2NaOH \longrightarrow 2NaAlO_2 + H_2O$			
		solution			
	$\operatorname{NaAIO}_2 + 2\operatorname{H}_2 \cup \longrightarrow \operatorname{AI}(\operatorname{OH})_3 + \operatorname{NaOH} + \operatorname{gangue}(s), (\operatorname{iron oxide})$				
(ii) White bauxite (One containing silicon oxide), Serpeck's process.

ore + N₂ + Carbon
$$\xrightarrow{\Delta}$$
 AlN + CO

 $AlN + 3H_2O \longrightarrow Al(OH)_3 + NH_3$

Aluminium nitride is water soluble.

169 Aluminothermy: $\operatorname{Cr}_2 O_3(s) + 2\operatorname{Al}(s) \longrightarrow \operatorname{Al}_2 O_3(s) + 2\operatorname{Cr}(s) \qquad \Delta G^0 = -431 \text{ kJ}$

The reaction is feasible, but does not proceed at room temperature as reactants and products are solids, At elevated temperature when chromium starts melting the reaction becomes feasible. (From Elingham diagram it can better be explained.)

170. The sulfide ore contains - copper pyrites (CuFeS₂), galene (PbS), Zinc blende (ZnS) etc. In the froth floatation the ore particles are wetted by oil (pine oil) and frothed out to the surface.

Collector - pine oil. Froth stabiliser - aniline, cresols. Depressant - NaCN.

Role of depressant : The reagent that depresses the formation of froth. e.g. ZnS and PbS can be separated from each other adding NaCN as depressant. As NaCN forms a soluble complex with ZnS never getting wet with oil but with water, while PbS getting frothed and surfaced out.

$$4 \operatorname{NaCN} + \operatorname{ZnS} \longrightarrow \operatorname{Na}_{2} \left[\operatorname{Zn} (\operatorname{CN})_{4} \right] + \operatorname{Na}_{2} \operatorname{S}$$

water soluble complex

171.
$$E_{Cu^{++}|Cu}^{0} = +0.34 V > E_{Zn^{2+}|Zn}^{0} = -0.76 V$$

The reduction potential value shows that $Cu^{2+}_{(Aq)}$ easily be reduced to Cu, but not Zn^{2+} to Zn. Thus, Zn can reduce $Cu^{2+}(Aq)$ to Cu

$$\operatorname{Cu}_{2}S(\operatorname{one}) \xrightarrow{\operatorname{KCN}} \operatorname{K}\left[\operatorname{Cu}(\operatorname{CN})_{2}\right] \xrightarrow{\operatorname{Zn}} \operatorname{Cu}$$

In order to reduce $Zn^{2+} \longrightarrow Zn$ more electro +ve metals like Ca, Mg or Al, stronger reducing agent (i.e. lower E^0 value) needed, but these metals react with water to liberate hydrogen and hence can't be used.

172. Sulfide ore of copper (Cu₂S) cannot be directly reduced by either coke (C) or hydrogen because $\Delta_f G^0$ of Cu₂S more negative than those of CS₂ and H₂S

Thus,

$$2Cu_2S + C \longrightarrow CS_2 + 4Cu, \Delta G = +ve$$
, not feasible.

$$\Delta_{\rm r}G = \Delta_{\rm f}G(CS_2) - 2 \times \Delta_{\rm f}G(Cu_2S)$$

 $\begin{array}{ccc} Cu_2S + H_2 & \longrightarrow & Cu + H_2S \\ more negative & less negative, & \Delta G = +ve, not feasible. \end{array}$

while $2Cu_2O + C \xrightarrow{\text{feasible}} 4Cu + CO_2$

From Elinghan diagran : At temperature > 1500 K :

$$\left[2Cu_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow Cu_{2}O_{(s)}\right] \Delta G^{0} = -300 \,\text{kJ(say)} \quad (i)$$

$$C_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)} \qquad \Delta G^{0} = -700 \text{ kJ}(\text{say}) \dots (ii)$$

Noe (ii) – (i) will be –

$$C_{(s)} + Cu_2O_{(s)} \longrightarrow CO_{(g)} + 2Cu \quad \Delta G^0 = -ve , (-700 \text{ kJ} + 300 \text{ kJ})$$
(feasible)

173. Anode mud contains metal like Ag, Au, Pt etc which are less reactive than Cu. Actually, they are not in a position to lose \overline{e} , though they constitute the electrode (anode). Cu gets oxidised at anode but other (Ag, Au, Pt) fails due to their higher reduction potential.

$$\left[E_{Cu^{++}|Cu}^{0} = +0.34 V \ E_{Au^{3+}|Au}^{0} = +1.40 V, \ E_{Ag^{+}|Ag}^{0} = +0.80 V\right]$$

Copper due to less reduction potential, it undergoes oxidation preferably & others remain in metal form.

$$Cu(s) \longrightarrow Cu^{2+}(Aq.) + 2\overline{e}$$

174. Reactions in different zones of blast furnace during extraction of iron :

A mixture of calcined ore (8 - parts) + coke (4 parts) + lime (1-part) is charged from the top of the furance and blast of hot air is blown upwards. Coke serves as fuel as well as

reducing agent. Line stone $(CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)})$ acts as flux to remove the impurities as slag.

The following reactions take place in the furnace :

(i) Combustion zone : It is at the base of the furnace where coke burns attaining a temperature of about 1775 K.

$$C_{(s)} + O_{2(g)} \longrightarrow CO_2(g) \Delta H = -393.4 \text{ kJ}$$

(ii) Fusion zone (1475 – 1575 K)

$$CO_{2(g)} + C_{(s)} \longrightarrow 2CO$$
 $\Delta H = +163.2 \text{ kJ}$

The temperature of the system is reduced. Reduction of iron oxide take place.

$$\operatorname{Fe}_2 O_3(s) + 3C_{(s)} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO} + \operatorname{heat}$$

(iii) Slag formation zone (1075 – 1275 K)

This is the middle portion of the furance. Lime stone decomposes here forming lime, CaO, used as flux.

$$CaCO_3 \longrightarrow CaO + CO_2$$

$$CaO + SiO_2 \longrightarrow CaSiO_3$$

(Cal.silicate - slag)

Being lighter the slag floats on the molten layer of the metal. Slag is removed.

(iv) Reduction Zone (500 - 800 K).

The temperature near the top of the furnace is 875 K. The oxide of iron gets reduced by carbon monoxide.

$$Fe_{2}O_{3} + 2CO \longrightarrow 2FeO + CO_{2}$$

$$FeO + CO \longrightarrow Fe + CO_{2}$$

$$Fe_{3}O_{4} + 4CO \longrightarrow 2Fe + 4CO_{2}$$

The spongy iron produced in the upper reduction zone moves down slowly and melts in the upper reduction zone moves down slowly and melts in the fusion zone. The melt is removed from the lower part of the furance through the tapping hole from time to time. The iron, thus obtained is called cast iron or pig iron.

175. In the metallurgy of aluminium, the metal to be isolated from alumina (Al_2O_3) by carrying out electrolytic reduction. The melting point of alumina is 2323 K. It is there mixed with cryolite, Na₃ Al F₆ which reduces the m.p. to 1173 K. Further, Cryolite also increases the electrical conductivity of the melt.

$$Na_3 AlF_6 \longrightarrow 3NaF + AlF_3$$

 $AlF_3 \longrightarrow Al^{3+} + 3F^{-}$

At cathode (graphite): $Al^{3+} + 3\overline{e} \longrightarrow Al_{(s)}$

At anode : $F^- \rightarrow F + e^-$

(iron vessel)

- $2Al_2O_3 + 12F \longrightarrow 4AlF_3 + 3O_2$
- 176. Refining of Germanium: Zone refining based on fractional crystallisation principle : Here the impurities are more soluble in the melt than in the solid (crystallised) state.

A circular mobile heater is fixd at one end of a rod of impure metal. The molten zone moves along with the heater which moves forward. As the heater moves forward the pure metal crystallises out of the melt & the impurities passed on to the adjacent molten zone. The same process is repeated several times & the heater is moved in the same direction, the impurities concentrated at one end which is finally cut off.

This process is useful for producing semiconductor and other metals of very high purity e.g. Ge, Si, B, Ga and In.

177. Mond's process for refining of nickel:

Nickel is heated in a stream of CO forming a volatile complex, nickel tetracarbonyl.

$$Ni + 4CO \xrightarrow{330-350K} Ni(CO)_{4}$$

The complex is subjected to higher temperature so that it's decomposed giving pure nickel.

 $Ni(CO)_4 \xrightarrow{450-470K} Ni + 4CO$

This is vapour phase refining process.

178. Leaching of low grade copper ores : Copper is leached out from low grade copper by using acid in presence air, where copper goes into the solution as Cu²⁺ ions.

$$\operatorname{Cu}(s) + 2\operatorname{H}^{+}(\operatorname{aq}) + \frac{1}{2}\operatorname{O}_{2}(g) \longrightarrow \operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{H}_{2}\operatorname{O}(\ell)$$

The solution containing Cu^{2+} ions is treated with scarp iron or $H_2(g)$ to get copper metal.

$$\operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{Fe}(\operatorname{s}) \longrightarrow \operatorname{Cu}(\operatorname{s}) + \operatorname{Fe}^{2+}(\operatorname{aq})$$

$$\operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{H}_{2}(g) \longrightarrow \operatorname{Cu}(s) + 2\operatorname{H}^{+}(\operatorname{aq})$$

- 179. (a) S^{2-} ions due to bigger size can more easily be polarised than smaller oxide ion. Ag⁺, Hg²⁺, Zn²⁺ and Pb²⁺ have high polarising power due to presence of d-subshell. Thus the sulfides ore more stable than oxides.
 - (b) Metal sulfides are insoluble in water and occur mostly in rocks but halides are highly soluble and get dissolved in rain water and carried to lakes and seas.
- 180. Calcination : It is a process of heating the ore strongly either in a limited supply of air or in the absence of air During the process
 - (i) moisture is removed
 - (ii) volatile impurities are removed.
 - (iii) the ore becomes porous
 - (iv) water from hydrated oxide removed.

 $Al_2O_3.2H_2O \longrightarrow Al_2O_3+2H_2O$

(v) Carbonates decompose to oxide.

$$Zn CO_3 \longrightarrow ZnO+CO_2$$

Roasting : It is the process of heating the ore strongly in the presence of excess of air at a temperature below the melting point of the metal. It is mainly employed in case of sulfide ores. During the process :

(i) S, As and P are removed as their volatile oxides, SO₂, As₂O₃, P₂O₅ respectively.

(ii) Ores of the metal are converted to their oxides e.g. sulfide ores on roasting give metal oxide and sulfurdioxide.

 $2 ZnS+3O_2 \longrightarrow 2 ZnO+2SO_2$

Both calcination and roasting generally done in the reverberatory furnace. In roasting the air holes are kept opened, while in calcination these are half opened or closed.

181. (i) Lime stone as flux to remove impurities as slag.

 $Ca CO_3 \xrightarrow{\Delta} CaO + CO_2$

$$CaO(lime) + SiO_2 (impurity) \longrightarrow CaSiO_3(slag)$$

(ii) To act as reducing agent in blast furnace.

Fusion zone: $CO_2 + C(Coke) \longrightarrow 2CO$

Reduction zone: $Fe_2 O_3 + 2 CO \longrightarrow 2 FeO + CO_2$

 $FeO + CO \longrightarrow Fe + CO_2$

Unit - VII 182. Bi : $6s^2 6p^3$ (valence shell configuration) ↑ ∕↓ \uparrow The three unpair e^{-} (s) easily take part in bonding giving +3 O.S. Due to strong 'inert pair effect' the 6-s (paired) electron are quite reluctant (inert) in forming bond. 183. P_{15} : $1s^2 2s^2 2p^6 3s^2 3p^3 3d^0$. 3s electrons on being unpaired take part in bonding favouring penta-covalency e.g. PCl. |↑ ſ T T (sp₃d-hybridisation) N (Z = 7) 1s² 2s² 2p³ (does not have d-orbitals). The available three unpair electrons take part in bonding exhibiting covalency state three. ↑ $\uparrow\downarrow$ e.g. NCl, (sp³- hybridized) 'N' has maximum valency state four where its N⁺ (iso electronic with C) e.g. 184. Aquaregia is a mixture of conc. HNO₂ and conc. HCl in the ratio (1:3). The liberated (nascent chlorine) oxidizes Pt and dissolves forming PtCl₄. $HNO_3 + 3HC1 \longrightarrow NOC1 + 2H_2O + 2C1$ nitrosylchloride $Pt + 4Cl \longrightarrow PtCl_{4}$ $PtCl_4 + 2HCl \longrightarrow H_2[PtCl_4]$, chloroplatinic acid With gold: $Au+3Cl \rightarrow AuCl$, $AuCl_3 + HCl \rightarrow HAuCl_4$, Chloroauric acid. 185. $N \equiv N$ $N(2s^2 2p^3)$ being of smaller size can for $P_{\pi} - P_{\pi}$ bond and hence can form multiple bond. It is a discrete molecule held by weak vanderWaals force, exhibits in gaseous state. P($3s^23p^3$), being of bigger in size fails to form multiple (π -) bond, but form stronger covalent bond. They exhibit in polymeric form P_4 units. Because of nature of bonding molecular nitrogen is a gas which the molecular form of other members (P_4 , As_4 and Sb_4 are solids.)

	186.	Nitrogen gas is diatomic $:N \\in \\in \\N:$ with electronic configuration as per MOT
		${}^{\sigma}1s^{2}{}^{\sigma^*}1s^{2}{}^{\sigma}2s^{2}{}^{\sigma^*}2s^{2}\pi 2p_x{}^{2}\pi 2p_y{}^{2}{}^{\sigma}2p_z{}^{2}$ and the bond order is three.
	187.	On the other hand 'P' is tetra atomic due to bigger size fails to for π -bond; but can form σ -bond and represented as P ₄ . (Due to higher bond dissociation energy of $N \equiv N$ (946 kJ/mol.), bond cleavage is not so easy and behaves all most as inactive gas. Anomalous behaviour of nitrogen: Basis of non-identical behaviour.
		i) high electronegativity (3.0) and high Λ H
		iii) non-availabitity of d-orbitals $(2s^22p^3)$
		iv) tendency to form $P_{\pi} - P_{\pi}$ bond i.e. multiple bond.
I		The aoimat(oos-behaviour is supported by following characteristics.
I		 (a) Nitrogen is a gas but others are solids. (b) Nitrogen is distantia but others are tating atomic
I		(c) Hydrogen bond is exhibited by NH,
		(d) Except NF ₃ other tri halides' of 'N' are unstable due to longer bond length, N-I > N-Br > N-Cl.
		(e) Due to small size and high electronegativity nitrogen forms nitride ion N ³⁻ , P to some extent also forms phosphide ion.
		(f) Nitrogen fails to form penta valency due to absence of d-orbitals.
		(g) It fails to form $d_{\pi} - p_{\pi}$ bond (due to absence of d-orbitals).
		Therefore compounds of the type $R_3N = O$ and $R_3N = CH_2$ are not possible however, phosphours and other members can be involved in the multiple bonding due to availability of d-orbitals.
		(h) Nitrogen is chemically inert under normal conditions because of high bond dissociation
		energy (N \equiv N), other molecules are reactive $\binom{1}{2} P - P_{1}^{2}$ due to in ability to forms
	188.	multiple bond and there present more fissionable single bond. The atomic size in the order $I > Br > Cl$.
	189.	The lone pair effect in the tetrahedral geometry of PCl ₃ , PBr ₃ and Pl ₃ in dominated by steric factor where due to bigger size of I, the bond angle, $< IPI$ in bigger as follows in the order Pl ₃ $>$ PBr ₃ $>$ PCl ₃ with decrease of steric factor. NH ₃ (107.8°), PH ₃ (93.6°), AsH ₃ (91.8°), SbH ₃ (91.3°), BiH ₃ (90°). The difference in bond angles is based on the electronegativity and size of the central atom. For example 'N' is smallest in size with maximum electronegativity (3.0). The electron density is very high around nitrogen causing greater repulsion between the bond pairs on moving down the group the electronegativity decrease and size increases. As a

pairs, on moving down the group the electronegativity decrease and size increases. As a result there is gradual decrease in the force of repulsion among the shared electron pairs on the central atoms resulting decrease in bond angle.

[214]

HF(l) also consists of chains of HF molecules but the chains are shorter, consisting of only five or six molecule on average.

HCl, HBr and HI fails to exhibit H-bonding, hence exhibit in gaseous state experiencing vanderWaals force.

201. This depends on the bond dissociation energy which depends on bond length. Longer is the bond length lower in the bond dissociation energy. (BDE).

Eq.
$$H - F > \dots < H - I$$

574 kJ 200 kJ

Thus, HI is a better reducing agent as it has greater tendency to lose H, $2HI \rightarrow I_2$

+2(H). Thus the reducing nature increases from HF to HI i.e. HF < HCl< HBr< HI. Acidic nature: In gaseous state, HX(g) are covalent in nature but becomes ionic in aq solution & behaves as acids. The acidic strength follows in the order:

This trend follows with the trend of increasing (BDE). HF is the weakest halogen acid due to:

high B.D.E ii) Intermolecular H-bonding i)

202. The acidic strength can be explained on the basis of unprotonated 'O',

In spite of change in O.S. H₃PO₂, H₃PO₃ and H₃PO₄ with varying basicity, these have identical number of unprotonated 0 atoms. The greater electrio-vity influences -I effect which is same for all these molecules and hence almost have identical strength.

203. Nitrogen has maximum O.N. +5, As O.N. can decrease in it undergoes reduction and acts as oxidizing agent.

e.q.
$$2HN\overset{+5}{O_3}(\text{conc.}) \longrightarrow H_2O + 2\overset{+4}{NO_2} + (O)$$

 $H\overset{+5}{NO_3} H\overset{+5}{NO_2}$

On the other hand N- exhibits + 3 O.S. in HNO₂, that can increase as well as decrease so it can act as reducing and oxidizing agent.

HNO₂ behaving as oxidizing agent i.e. 'N' undergoes decrease in O.N.

$$2H \overset{+3}{N}O_2 \longrightarrow H_2O + 2 \overset{+2}{N}O + (O)$$

 HNO_2 as reducing agent i.e. 'N' changes its O.N. form +3 to +5.

Oxidation: $HNO_2 + O \longrightarrow HNO_3$ [Addition of 'O'] (or) $NO_2^- + H_2O \longrightarrow NO_3^- + 2H^+ + e^-$ [Removal of \overline{e}]

(or) $2HNO_2 + H_2O \longrightarrow N_2O_5 + 4(H)$ [Removal of H]

204. NH_4NO_2 never sublimes rather decomposes gives $N_2(g)$.

 $NH_4NO_2(s) \longrightarrow N_{2(g)} + 2H_2O(1)$

205. The bond between P—F is stronger due shorter bond length as 'F' size is smaller. So 'P' fails to bond with 'O' of H₂O, on the other hand PCl₃ gets hydrolysed,

- Due to smaller size 'O' forms multiple (π) bond but other can't.

211. Water is liquid due to presence of inter molecular H-bonding

H₂S (bigger size) held by vander Waals force, hence in gaseous state.

212. H_2O_2 is a reducing agent and can react with KMnO₄ (Oxidising agent). On reduction the purple colour gets discharged.

$$\left[\text{H}_2\text{O}_2 \longrightarrow \text{O}_2 + 2\text{H}^+ + 2\text{e}^- \right] \times 5$$
$$\overline{\text{MnO}_4 + 8\text{H}^+ + 5\text{e}^-} \longrightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \right] \times 2$$

$$O_3 \longrightarrow O_2 + [O]$$

Ion-electron process:

$$2H^+ + O_3 + 2e^- \longrightarrow O_2 + H_2O$$

213. Without Ozone layer, no life could exist on earth, as it prevents harmful ultraviolet radiations from reaching our planet. UV radiation harmful to animal life on earth. Ozone depleting substance (ODs) are being released in atmosphere by high flying jets and rockets. These are converting Ozone to Oxygen. (ODs)s are CFC, nitrogen oxides, chlorine, carbon tetrachloride etc.

$$NO_2 + O_3 \longrightarrow NO + 2O_2$$

The concentration in the stratospheric Ozone decrease leading to the formation of Ozone hole, through which U.V rays are in a position to pass through the Ozone layer and have a direct access to our planet. Such U.V. impact can cause skin cancer, loss of sight and affect the immune system.

214.
$$E_{\frac{1}{2}F_2/F^-}^0 = 2.87 \text{ V}, E_{\frac{1}{2}Cl_2/Cl^-}^0 = 1.36 \text{ V}$$

Greater is the reduction potential greater is tendency to be reduced $(F_{(g)} + e^{-} \longrightarrow F^{-})$

& more powerful as oxidizing agent this the reason why 'F' is a better oxidizing agent than 'Cl'.

Even it can oxidize oxygen and noble gases.

$$O_{(g)} + F_{2(g)} \longrightarrow OF_{2(g)}$$
$$Xe_{(g)} + F_{2(g)} \longrightarrow XeF_{2(s)}$$

215. $Cl_2 + H_2O \longrightarrow 2HCl + [O]$

Coloured matter + [O] \rightarrow colourless / bleached $\xrightarrow{\text{air}(O_2)}$ Further bleached.

 $SO_2 + H_2O \longrightarrow SO_3 + 2[H]$

Coloured matter + [H] \rightarrow Bleached (colourless) $\xrightarrow[oxygen]{atm.}$ colour reappears

Thus, chlorine water bleaches by oxidation while SO₂ bleaches in aqueous condition by reduction. As surrounding atmosphere is a mild oxidant the bleached matter on coming in contact with atmospheric oxygen may regain its colour. Thus, bleaching by 'Cl,' is permanent while by 'SO,' is temporary. 216. Inter halogen compounds of general formula AXn (n = 3, 5, 7) are more reactive than A₂ and X_2 . This is due to fact that (a) A-X is much polar due to difference in electronegativity, while A-A and X-X are non-polar, (b) Weakness of covalent bond between dis-similar atoms. (A-X bond is weaker than A-A or X-X bond. 217. Br(III) |1||1||1||1|| $AB_{3}L_{2}$ – type 2- lone pair, 3 - bond pair. Lone pair placed at an angular distance of 120° to minimize repulsion. F. Br As L-L repulsion is greater than b-b repulsion it's slightly bent T-shaped 218. The m.p and b.b. of noble gases are very low. This is due to noble gases (atoms) are held together only by weak vander waals forces of attraction both in solid and liquid state. However this increases on moving down the group with increase of atomic size. Greater in the size greater in the extent of vander walls forces. 219. Group 18 elements are called aerogens (generated from air) as these are isolated form liquid air by fractional evaporations. These gases have no unpair e⁻ in its valence shell having s^2p^6 configuration (1 + 1 + 1 + 1) except He (1s²) for this. These are 'zero valent having very less combining capacity, under exceptional conditioin some of these (e.q. Kr, Xe) form oxyfluorides, oxides and fluorides. This is due to low ionisation energy $(\Delta i H)$ of Kr and Xe and high reduction potential of F and O. 220. Heat of solution of sulfuric acid is highly exothermic and temperature suddenly rises causing bumping of acid, where acid is thrown upward. Therefore, reverse process is followed i.e. acid in added slowly to water to avoid bumping accident. Acid has high affinity for water. 221. Sulfur present in group 16 or VI with six $e^{-}(s)$ in valence shell. Its maximum O.N = +6 & minimum is -2. In SO₃ sulfur exhibits maximum O.N. + 6 which can decrease but can't increase further i.e. SO₃ can be reduced but can't be oxidized. As it is reduced, can act as oxidizing agent. $SO_3 \longrightarrow SO_2 + O$ $2HBr + O \longrightarrow H_2O + Br_2$ On the other hand, in SO, sulfur has +4. O.N. which can increase and decrease behaving both as reducing and oxidizing agent.

SO₂(as oxidant). SO₂ \rightarrow S+2(O) SO₂(as reductant) 2H₂S+2(O) \rightarrow 2S+2H₂O

222. $\Delta i H(O_2) = 1166 \text{ kJ/mol}$

 $\Delta i H(Xe) = 1170 \text{ kJ/mol}$

The data shows the ionization enthalpies of O_2 and Xe are comparable: Dioxygen (O_2) forms compound with PtF_6 , i.e. $O_2^+ [PtF_6]^-$, So Bartlell (1962) thought Xe with comparable $\Delta_i H$ value should forms compound with $PtF_6(g)$

 $\operatorname{Xe}(g) + \operatorname{PtF}_{6(g)} \longrightarrow \operatorname{Xe}^{+} [\operatorname{PtF}_{6}]^{-}$

Here Pt Fc is very powered oxidizing agent oxidizing $O_{\!_2}$ to $O_{\!_2}^{\scriptscriptstyle +}$ and Xe to Xe^{\!_+}

223. (a) HCl(g) is a covalent compound which fails to conduct electricity while on hydration it ionizes and conducts electricity. A HCl(aq) is an electrolyte.

 $HCl_{(g)} + H_2O(1) \longrightarrow H_3O^+(aq) + Cl^-(aq)$

- (ii) Iodine, a covalent nonpolar moleucle less affinity for water, slightly soluble. It dissolves in 40% aq. solution of KI due o formation of KI₃.
- 224. Anomalous behavior of fluorine:

Reason: \rightarrow Its size in small

 \rightarrow It has high electronegative value (4.0)

 $\rightarrow {}_{9}F(1s^2 2s^2 p^5)$ does not have d-orbitals.

 \rightarrow Bond dissociation enthopy is less due to L-L repulsion in spite of small

bond length. :F:-:F:

 \rightarrow High reduction potential. $E_{\frac{1}{2}F_2/F^-}^0 = 2.87 \text{ V}$

Points of difference:

- (a) F has ore O.S. i.e. -1 (mostly), but other can have O.S. -1 to +7. in both having the +ve and -ve O.S.
- (b) 'F' is most reactive non-metal due to its low bond dissociation enthalpy of F_2 and high electronegativity.
- (c) H-F is a liquid due to presence of inter molecular H-bonding but other hydrogen halides are gases.
- (d) HF acid generally exists in dimeric form H_2F_2 but others are as monomer.
- (e) F due to absence of d-orbitals fails to form polyfluoride ion others can form

 $Cl_{3}^{-}, Br_{3}^{-}, I_{3}^{-}, I_{5}^{-}$ etc.

(f) F^- acts as better ligand $[AlF_6]^{3-}$, $[FeF_6]^{3-}$, $[AgF_2]^-$ etc.

Unit - VIII

225. A transition metal exhibits higher oxidation, states in oxides and fluorides because oxygen and fluorine are of small size and high electronegativity, high reduction potential and hence can readily oxidise the metals. For example, OsF_6 , V_2O_5

- 226. (a) They form complex compounds.
 - (b) They act as good catalysts.
 - (c) They are paramagnetic in nature.
 - (d) They show variable oxidation state.
 - (e) The elements and their salts are coloured.
- 227. Lanthanides show limited number of oxidation states, such as +2, +3 and +4 (+3 is the principal oxidation state). This is because of large -energy gap between 5d and 4f subshells. On the other hand, actinides also show principal oxidation state of +3 but show a number of other oxidation states also.

For example, uranium (Z = 92) exhibits oxidation states of +3, +4, +5, +6, and +7 and neptunium (Z = 94) shows oxidation states of +3, +4, +5, +6 and +7. This is because of small energy difference between 5f and 6d orbitals.

- 228. Most of transition metal ions are coloured both in the solid state and in aqueous solutions. The colour of these ions is attributed to the presence of incomplete (n 1)d-subshell. The electrons in these metal ions can be easily promoted from one energy level to another in the same *d*-subshell. The amount of energy required to excite the electrons to higher energy states within the same d-subshell corresponds to energy of certain colours of visible light. Therefore, when white light falls on a transition metal compound, some of its energy corresponding to a certain colour, is absorbed causing promotion of *d*-electrons. This is known as *d* d transitions. The remaining colours of white light are transmitted and the compound appears coloured.
- 229. Some transition metals and their compounds act as good catalysts for various reactions. This is due to their ability to show multiple oxidation states. The common examples are Fe, Co, Ni, V, Cr, Mn, Pt, etc.

The transition metals form reaction intermediates with the substrate by using empty *d*-orbitals. These intermediates give reaction paths of lower activation energy and therefore, increase the rate of reaction. For example, during the conversion of SO₂ to SO₃, V₂O₅ is used as a catalyst. Solid V₂O₅ absorbs a molecule of on the surface forming V₂O₄ and the oxygen is given to SO₂ to form SO₃. The divanadium tetraoxide then converted to V₂O₅ by reaction with oxygen :

 $V_2O_5 + SO_2 \longrightarrow SO_3 + V_2O_4$ Catalyst Divanadium tetraoxide

 $2V_2O_4 + O_2 \longrightarrow 2V_2O_5$

$$6Fe^{2+} + CrO_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

(ii)
$$2\operatorname{CrO}_4^{2-} + 2\operatorname{H}^+ \longrightarrow \operatorname{Cr}_2\operatorname{O}_7^{2-} + \operatorname{H}_2\operatorname{O}$$

(iii)
$$\operatorname{MnO}_{4}^{-} + 8\mathrm{H}^{+} + 5\mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+} + 4\mathrm{H}_{2}\mathrm{O}$$

 $5\mathrm{Fe}^{2+} \longrightarrow 5\mathrm{Fe}^{3+} + 5\mathrm{e}^{-}$

231. E^0 values of Cr^{3+}/Cr^{2+} is negative while for Mn^{3+}/Mn^{2+} , it is positive $[E^0Cr^{3+}/Cr^{2+}) = -0.41V$ and $E^0 (Mn^{3+}/Mn^{2+}) = +1.37 V$]. Thus, Cr^{2+} can undergo oxidation to Cr^{3+} readily and is a reducing agent while Mn^{3+} can undergo reduction and hence is an oxidizing agent.

232. (i) Complex formation :

- (a) Small size of the atoms or ions of transition metal.
- (b) high nuclear charge.
- (c) availability of vacant d-orbitals of suitable energy to accept lone pairs of $\overline{e}(s)$ donated by ligands.
- (ii) Most of the compounds of transition elements are paramagnetic in nature i.e. attracted by the magnetic field. Partial filling d-orbitals ranges from d¹ to d⁹ electronic configuration with d⁰ (Sc³⁺) and d¹⁰ (Zn²⁺) are diamagnetic with zero effective magnetic moment, μ_f .

In addition to this (paramagnetic or diamagnetic) few substances such as iron metal, iron oxide which are highly magnetic. These are call ferromagnetic.

233. $_{21}$ Sc, 3d¹4s², Sc³⁺(3d⁰) is isoelectronic with Ar(Z = 18) so its compounds are diamagnetic and colourless, however, this is included in the d-block as (i) it exhibits variable valency due to involvement 3d as well as 4s $\overline{e}(s)$, Sc²⁺, Sc³⁺

(ii) General electronic configuration $(3d^{1-14} 4s^{0} o^{(r)})$ confirms its existence in d-block

 $(S_c = 3d^1 4s^2)$. (iii) It forms no colour compounds due to non-availability of $\overline{e} - 3d.(3d^0)$

- 234. Oxoanion of metals have highest O.S. e.g. +7 in MnO_4^- . This is because high electronegative 'O' i.e. oxidising the metal bonded. Deelectronation increases O.S.
- 235. $_{30}$ Zn, $_{3}$ d¹⁰ 4s², (i) it does not have partially filled d-orbials (ii) forms colourless salt, (iii) $_{Zn}^{2+}$ is diamagnetic.

However, this is included in 3d-series as

- (a) it responds to general electronic configuration of transition elements.
- (b) Complex formation tendency like other transition metals.

e.g. $[Zn(NH_3)_4]^{2+}$

- 236. (i) These are held by strong inter-atomic forces & have high enthalpies of atomisation. These are maximum at about middle of each series indicating that one unpair \overline{e} per d-orbital is particularly favourable for strong inter atomic attraction.
 - (ii) Hydration of ion depends on (1) smaller size of cation. (2) higher charge of the cation (3) presence of vacant orbitals to co-ordinate with water molecule. Cu^{2+} . due to its smaller size and higher charge can form aqua complex as well as experience greater ion-diople force of attraction.
 - e.g. $\left[Cu(H_2O)_4\right]^{2^+}, \left[Cu(NH_3)_4\right]^{2^+}$ stable complexes. Disproportionation of Cu^+ . $2Cu^+ + water \longrightarrow Cu^{2^+} + Cu + water$

Hydration energy Cu^{2+} is greater than Cu^+ . Cu^{2+} more soluble in water.

237. Ag
$$(4d^{10}5s^{1})$$
 $Ag^{+}(4d^{10})$

- i) electronic configuration corresponds to general electronic configuration.
- ii) high heat of atomisation

(iii) Ag⁺ can form complex e.g. $\left[Ag(NH_3)_2 \right] Cl$ 238. The oxidation potential of a metal depends on following factors as explained in the cycle. $M(s) \longrightarrow M^+(aq)$ $\int \Delta_{\text{subl.}} H \int \Delta_{\text{hyd.}} H$ $M(g) \xrightarrow{\Delta_i H} M^+(g)$ i) Heat of sublimation / atomisation (+ve) ii) Δ_{i} H is the ionisation enthalpy (+ve) enthalpy Δ_{hvd} H = hydranation enthalpy. iii) If $M_{(s)} \longrightarrow M^+(Aq)$ is the oxidation potential. If it's -ve (exothermic), the oxidation is favouravle. To make at -ve, $\Delta_{sub}H + \Delta_{i}H + \Delta_{hvd}H = \Delta H$ Smaller the value of ΔH greater is the tendency to be oxidised in aq. solution & greater is stability in that oxidation state (Cu^{2+}) . $E^{0}_{Cu/Cu^{2+}(Aq)} = -0.34V$. $E^0_{Zn|Zn^{2+}(Aq)} = +0.76 V$. The high value of atomisation (+339 kJ) and low hydration energy (-2121 kJ/mol) may account for low value of oxidation potential. $\mu_{eff} = \sqrt{n(n+2)}$, n is the number of unpair e^{-1} 239. $C_0^{2+}(3d^7)$ i.e. n = 3, $Fe^{3+}(3d^5)$ i.e. n = 5. 240. High hydration energy due to smaller cationic size and higher charge. 241. Mn(z = 25) has \overline{e} -configuration $3d^5 4s^2$. Because of small energy difference between 3d & 4s subshell all the seven $e^{-}(s)$ participate in bonding for which highest oxidation state is +7. $Mn_2 O_7$ (other oxidies are MnO, $Mn_2 O_4$, $Mn_2 O_3$, $Mn O_2$, $Mn O_3$) Oxygen is a better oxidising agent due to its higher reduction potential $E_{O,|H,O}^0 = 1.23 V$ and deelectronate Mn changing the O.S. +2 to +7. 242. The process where same element undergoing oxidation and reduction is called disproportionation. $3 C_{r}^{+5} O_{4}^{3-} + 8 H^{+} \longrightarrow 2 C_{r}^{+6} O_{4}^{2-} + C r^{3+} + 4 H_{2} O_{4}^{-}$ $3Cr^{+5}O_4^{3-} + 8H^+ \longrightarrow 2Cr^{+6}O_4^{2-} + Cr^{3+} + 4H_2O_4^{-}$ High is the positive O.S. greater is the electron accepting tendency and electron ac-243. ceptors are acids (Lewis) 244. Ref. text (for configuration) stability of transition metal ion: stability of metal ion is directly proportional to the unpair electron. The exactly half filled (d⁵) and completely filled d-orbitals (d¹⁰) are extra-stable.

258.
$$\left[\operatorname{Ni}(\operatorname{NO}_{2})_{6}\right]^{4-}, \quad \left[\operatorname{Ni}(\operatorname{NH}_{3})_{6}\right]^{2+}, \quad \left[\operatorname{Ni}(\operatorname{CH}_{2})_{6}\right]^{2+}$$
As per spectrochemical series. $\operatorname{NO}_{2} > \operatorname{NH}_{3} > \operatorname{H}_{2}\operatorname{O}$
Energy absorption :
$$\left[\operatorname{Ni}(\operatorname{NO}_{2})_{6}\right]^{4-} > \left[\operatorname{Ni}(\operatorname{CH}_{3})_{6}\right]^{2+} > \left[\operatorname{Ni}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{2+}$$
Since $\operatorname{E} = \frac{\operatorname{hc}}{\lambda}$, wavelength of energy absorbed will be in the order
 $\operatorname{Ni}(\operatorname{H}_{2}\operatorname{O})_{6} < \left[\operatorname{Ni}(\operatorname{NH}_{3})_{6}\right]^{2+} < \left[\operatorname{Ni}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{2+}$
259. (a)
$$\left[\operatorname{Co}(\operatorname{NH}_{3})_{4}(\operatorname{H}_{2}\operatorname{O})_{2}\right]_{2}(\operatorname{SO}_{4})_{3}$$
(b)
$$\left[\operatorname{Cr}(\operatorname{en})_{3}\right]\operatorname{PO}_{4}$$
(c) $\operatorname{K}_{2}\left[\operatorname{Pt}(\operatorname{CN})_{6}\right]$
(d) $\operatorname{Na}_{3}\left[\operatorname{Fe}(\operatorname{C}_{2}\operatorname{O}_{4})_{3}\right]$
Unit - X
B (a) Account for the following :

1.

Chlorobenzene

- * C is sp²hybridised
- * Due to greater s-character (33.3%) releases less \overline{e} towards 'Cl' and C-Cl bond becomes less polar.
- * C-Cl bond developes double bond character due to delocalisation of lone pair in 'Cl'.
- * C-Cl bond length is less (due to greater 's' character) dipolemoment = charge × distance. Less dipolemoment makes the bond less polar.

Chlorocyclohexane

- * sp³- hybridised.
- * s-character 25%. partial (–ve) charge on 'Cl' is more getting the bond (C–Cl) polar.
- * No. resonating structures
- * C-Cl bond length is more and hence greater dipolemoment and C–Cl bond is more polar.

Propagation :

 $CH_3 - CH_2 - CH_2 Br + HBr \longrightarrow CH_3 - CH_2 - CH_2 Br + Br^{\bullet}$

(2⁰) free radical 1-Bromopropane (major product) n HBr adds to propene (unsymmetrical alkene) 1-Bromopropane is formed

Thus, when HBr adds to propene (unsymmetrical alkene) 1-Bromopropane is formed as peroxide effect or Kharasch effect.

7. HCl fails to form Cl. (free radical) as (smaller bond length) (i) H-Cl has greater bond strength to undergo bond fission. In case H-I termination step predominates over propagation liberating iodine. (ii) $C_{6}H_{5}COO^{\bullet} + HI \longrightarrow C_{6}H_{5}COOH + I^{\bullet}$ i.e. $CH_3 - CH = CH_2 + I^{\bullet} \longrightarrow CH_3 - CH - CH_2I$ Propagation: Termination: $I \bullet + \bullet I \longrightarrow I_{\gamma}$ 8. Iodination of alkanes being reversible and endothermic reaction, it's carried out is presence of oxidising agent like HIO₃/HNO₃. The product HI gets oxidised liberating I₂ (reactant). The reactant concentration increases to favour better yield or the reaction proceeds in forward direction as per Le-Chatelier's principle. $RH + I_2 \implies RI + HI$ $5HI + HIO_3 \longrightarrow 3I_2 + 3H_2O$ $2 \text{HI} + 2 \text{HNO}_3 \longrightarrow I_2 + 2 \text{NO}_2 + 2 \text{H}_2 \text{O}$ $2IO_3^- + 12H^+ + 10e^- \longrightarrow I_2 + 6H_2O$ $\longrightarrow I_2 + 2H^+ + 2e^-] \times 5$ 2HI

$$2IO_3^- + 2H^+ + 10HI \longrightarrow 6I_2 + 6H_2O$$

i.e. $HIO_3 + 5 HI \longrightarrow 3I_2 + 3H_2O$

9. Alkyl halide with KCN gives alkyl cyanide. Cyanide ion is a resonance hybrid of following structures:

It is clear that cyanide can attack nucleophilic site through 'C' as well as N. Hence it's an ambident nucleophile.

KCN in an electrovalent compound $\left(\text{KCN}\longrightarrow\text{K}^++\bar{\text{C}}\text{N}\right)$ with $\bar{\text{C}}\text{N}$ nucleophile and the attack mostly occurs through 'C' atom of the cyanide group as C–C bond is stronger than C–N bond.

$$N\overline{C} + -C\overline{X} \longrightarrow N \equiv C - C\overline{\zeta} + X^{\Theta}$$

10. AgCN is predominately covalent. Therefore, in this case only N-atom is free to donate the e⁻ pair and the nucleophilic attack mostly occur through the N-atom of the cyanide group forming isocyanide as major product.

$$RX + Ag - C = \overline{N} : \longrightarrow R - N \equiv \overline{C} : + AgX$$

11. C and N can form multiple bond. In CN bond can be made through 'C' to form cyanide and through 'N' to form isocyanide. Similarly 'N' and 'O' also can form multiple bond. 'N' of the group $-NO_2$ bonded to C. It's nitrocompound while 'O' of $-NO_2$ bonded to

'C', -C-O-N=O organic nitrite is formed. Group with more than one attacking site is called ambident nucleophile.

12. KNO_2 is an ionic compound giving nitrite ion, O = N - O. Here the linkage through oxygen takes place giving alkyl nitrite.

$$RX + O - N = O \longrightarrow R - O - N = O + X^{-} + O^{-} = O^{-} + O^{-} + O^{-} + O^{-} = O^{-} + O^{$$

On the other hand $AgNO_2$ is mainly a covalent compound and attack can take place through nitrogen atom which has a lone pair of $e^{-}(s)$,

Ag - O -
$$\dot{N} = O + C_2 H_5 Br \longrightarrow C_2 H_5 - N \swarrow O^- + AgBr$$

Nitroethane

13. Alkyl halide can be prepared from alcohol breaking $C \not= OH$ bond where C- is sp³- hybridised. Due to greater p-character (75%), the bond length is tending more towards fissionability and substitutive nature.

e.g. ROH + HCl
$$\xrightarrow{\text{ZnCl}_2(\text{Anh.})}$$
 RCl + H₂O

 $ZnCl_2$ (Anhy) is a Lewis acid its e⁻ – attracting tendency makes the C–O bond weaker favouring formation of carbo-cation. This results the reactivity of alcohols follows in the order $3^0 > 2^0 > 1^0$ (ZnCl₂ even not necessary in case of 3^0 alcohol). In case of 3^0 alcohol the 3^0 -carbocation better stabilised by +I effect and hyperconjugation. On the other hand in phenol due to resonance, there developes – C = O,

 $(\pi$ – character), making stronger bond between C & O and substitution by –X is not possible.

Further protonation of phenol is not possible, as 'O' already acquired (+) charge due to delocalisation of its lone pair of e^- .

 3^{0} -alcohol is preferred for protonation as 3^{0} -carbocation is more stable due to (i) +I 14. effect (ii) hyperconjugation effect. $(CH_3)_3 C - OH \xrightarrow{H^+} CH_3 \rightarrow CH_3 \rightarrow CH_3$ (+I effect) $H - CH_2 - \overset{+}{C} - CH_3 \longrightarrow H^+ \quad CH_2 = C \swarrow \overset{CH_3}{\searrow} \longleftrightarrow$ Nine hyper conjugative ĊH, structure. 15. $NaBr + H_2SO_4 \longrightarrow NaHSO_4 + HBr$ $ROH + HBr \longrightarrow RBr + H_2O$ But HI is a better reducing agent (HI > HBr > HCl) due to bigger size and longer H–I bond length. So HI (not HBr and HCl) can easily be oxidised by H_2SO_4 . $H_2SO_4 \longrightarrow H_2O + SO_2 + O$ $2HI + O \longrightarrow H_2O + I_2$ Due to absence of HI, alcohol fails to give RI in presence of conc. H_2SO_4 . Conc. H_2SO_4 used to prepare HX (NaX + H_2SO_4) caused dehydration of 3^o and 2^o 16. alcohols forming alkene as the by - products. The order of dehydration of alcohol: $3^0 > 2^0 > 1^0$. 17. H_3PO_4 is an acid but not an oxidant like H_3SO_4 . HI is obtained when H_3PO_4 acid reacts with KI $KI + H_3PO_4 \longrightarrow KH_2PO_4 + HI$ $CH_3CH_2OH + HI \longrightarrow CH_3 - CH_2I + H_2O$ 18. Cyanide is an ambident nucleophile as it can bond through 'C' foming cyanide (nitrile) and through 'N' forming isocyanide. (Two different bonding sites). $CH_3 - CH_2 - (Cl/Br) + NaI \xrightarrow{acetoneor CH_3OH} CH_3 - CH_2 - I + Na(Cl/Br)$ 19. Such preparation of alkyl iodide from alkyl chloride or bromide in presence of acetone or methyl alcohol is called Finkelstein reaction. Both NaCl & NaBr are very little soluble in acetone or CH,OH. They get precipitated living alkyl iodide and reaction proceed in forward direction with better yield of iodoalkane (RI).

20. Isomers of Bromobutane :

$$\begin{array}{c} CH_{3} - CH_{2} - CH_{2} - CH_{2}Br, CH_{3} - CH - CH_{2} - CH_{3}, CH_{3} - CBr - CH_{3} \\ CH_{3} - CH - CH_{2}Br & Br \\ CH_{3} \\ (1^{0}) \\ B.P.: CH_{3} - (CH_{2})_{2} - CH_{2}Br > CH_{5}CHBr - C_{2}H_{5} > (CH_{3})_{2}CHCH_{2}Br > (CH_{3})_{3}CBr \\ CH_{3} - CH_{2} - CH_{2} - CH_{2}Br > CH_{3} - CH - CH_{2} - CH_{3} > CH - CH_{2}Br > CH_{3} - CH_{3} \\ CH_{3} - CH_{2} - CH_{2} - CH_{2}Br > CH_{3} - CH - CH_{2} - CH_{3} > CH - CH_{2}Br > CH_{3} - CH_{3} \\ CH_{3} - CH_{2} - CH_{2} - CH_{2}Br > CH_{3} - CH - CH_{2} - CH_{3} > CH_{3} - CH - CH_{2}Br > CH_{3} - CH_{3} - CH_{3} \\ CH_{3} - CH_{2} - CH_{2} - CH_{2}Br > CH_{3} - CH - CH_{2} - CH_{3} > CH_{3} - CH - CH_{2}Br > CH_{3} - CH_{3} \\ CH_{3} - CH_{3} \\ CH_{3} - CH_{$$

The b.p. decreases with decrease of vanderWaals force which depends on size and volume of the moelcule.

ĊH,

Due to sterric effect in 3^0 – alkyl halide the back side approach of the nucleophile 21. becomes hindered as a result 3ºalkyl halide becomes less reactive. It can proced through S_{M} –1 mechanism where a carbocation intermediate is formed. Due to planarity (sp²) of the intermediate the nucleophile can approach from either side resulting (optically inactive) racemic mixture e.g.

Br

I.
$$H \stackrel{CH_{3}}{\longrightarrow} \stackrel{I}{\longrightarrow} H \stackrel{CH_{3}}{\longrightarrow} H \stackrel{F^{-}}{\longrightarrow} H \stackrel{F^{-}}{\longrightarrow} H \stackrel{CH_{3}}{\longrightarrow} H \stackrel{F^{-}}{\longrightarrow} H \stackrel{CH_{3}}{\longrightarrow} H \stackrel{CH_{3}}$$

As slow step (rate determining) involves only alkyl halide it's a first order reaction. rate = k [alkylhalide]

Carbocation

The second step is fast (ionic reaction)

22. 2-Bromo propane with sodium ethoxide undergoes substitution as the smaller ethoxide acts as a nucleophilie (weaker base)

$$CH_{3} - CH_{2}O^{-} + CH_{3} - C - Br \xrightarrow[CH_{3}]{S_{N-2}} CH_{3}CH_{2}O - C - CH_{3}$$

- 23. Ease of Hydrolysis of chlorobenzene.
 - When chlorobenzene is heated with aq. NaOH solution at a temperature of 623 K i) and a pressure of 300 atm., phenol is formed. (Dow's process)

25. -Cl is a ring activating reagent & hence -o/p- directing so chlorobenzene on nitration gives o- and p- nitro chlorobenzene where p- nitro chlorobenzene predominates due to less steric factor (position effect).

In the resonating structure the +ve charge rests on the 'C' to which the electron releasing –Cl is linked and makes it stable i.e. on substitution of 'Cl' at p- position gives stable structure.

- 26. -NO₂ group shows its effect at -o and p- position and not at m-position. So mnitrochlorobenzene not easily hydrolysed.
 - In case of m-mitro chloro benzene, none of the resonating structure bears the negative charge on the C- atom linking to $-NO_2$ group. Therefore, the presence of $-NO_2$ group at m-position does not stabilise the -ve change (contrary to $-NO_2$ group at o- and p- position) and no effect on reactivity is observed by the presence of $-NO_2$ group at m-position.

27. Nitrating agent is a mixture (1:1) of conc. HNO_3 and Conc. H_2SO_4 . As H_2SO_4 is stronger HNO_3 acts as base, the proton acceptor.

i.e.
$$HNO_3 + H_2SO_4 \longrightarrow \overset{+}{N}O_2 + HS\overline{O}_4 + H_2O$$

electrophile

NO₂ (electrophile) attacks the benzene ring, rich of $\pi(\bar{e}s)$ favouring S_E.

28. Chlorobenzene undergoes electrophilic substitution reactions like chlorination, nitration, sulfonation and Friedel- Crafts reaction. Halogen atom (–Cl) inspite of greater electronegativity it imparts electron releasing tendency due to presence of lone pair of $\overline{e}(s)$ conjugative with σ and π bonds. It activates the ring and further substitution occurs at o– and p– positions with respect to halogen atom .

Thus, chlorobenzene when heated with CH,Cl in presence of FeCl,(Anhy.) o- and pchloro toluene are formed. Due to -I effect of -Cl, the ring gets some what deactivated as compared to benzene & hence $S_{_{\rm F}}$ reaction in halo-arenes –occur slowly and require more drastic condition as compared to those in benzene. Thus, alkylation of chlorobenzene is slower than alkylation of benzene. $\xrightarrow{CH_3Cl}{FeCl_3}$ O + O CH_3 CH, CH₃ CH₃ 29. $CH_3 \xrightarrow{-C}{-CH_2OH} \xrightarrow{HBr}{(H^+)} CH_3 \xrightarrow{-C}{-CH_2OH} CH_2 \xrightarrow{-H_2O} CH_3 \xrightarrow{-C}{-CH_2OH} CH_3 \xrightarrow{-H_2O} CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$ 1° (Less stable) Neo-pentylalcohol Br $\begin{array}{cccc} CH_{3} - \overset{\bigoplus}{C} - CH_{2} - CH_{3} & \xrightarrow{Br^{-}} & CH_{3} - \overset{|}{C} - CH_{2} - CH_{3} \\ & & & \downarrow \\ CH_{3} \\ (3^{0} - \text{carbocation more stable}) & & \text{tertpentyl bromide} \end{array}$ 30. $C_{c}H_{s}CH_{c}Cl$ (Benzyl chloride) is a primary alkyl chloride while ($C_{c}H_{s}$)₂CH Cl is a secondary one. The hydrolysis of both these compounds with aq. KOH (Polar) is likely to proceed by $S_N - 1$ mechanism due to by ionisation the carbocation in both the cases & are resonance stabilised. (i) In water, a polar solvent the ionisation is favoured leading to S_N^{1} mechanism (ii) $C_6H_5CH_2Cl$ (Slowstep) $+ Cl^{-}$ 1°-Carbocation 2^o-Carbocation (more stable) The secondary carbocation is more stable as the +ve charge dispersed/ delocalised on two phenyl groups. Thus C₆H₅ CHCl-C₆H₅ is more easily hydrolysed by KOH (aq.) as compared to $C_6H_5CH_2CI$. $R-Cl+KOH(aq) \xrightarrow{S_N} ROH+KCl$ 31.

$$RX + HNH_{2} \xrightarrow{-HX} RNH_{2} \xrightarrow{RX} P_{2}NH \xrightarrow{RX} R_{3}N \xrightarrow{RX} R_{4}^{\dagger}NX^{-} Tetraalkyl ammonium halide.$$
34. (a) $CH_{3} - CH_{2} - CH_{2}CI$ $CH_{2} = CH - CH_{2}CI = n - propylchloride allyl chloride $-C - CI = propylchloride = propylchlor$$

36. Desired aliphatic compounds can be synthesized by suitable nucleophilic substitution reaction.

- (iii) Polarity C Cl bond is more polar(2.05 D)
- (iv) Reactivity: More reactive.
- (v) Alkyl halide undergoes nucleophilic substitution reaction.
- (iii) Less polar (1.73 D)
- (iv) Less reactive. higher bond dissociation energy.
- (v) It fails to give S_N reaction ordinarily rather undergoes electrophilic substitution reaction.

Chlorobenzene is less reactive fails to undergo nucleophilic substitution reaction as incase of alkyl halide / chlorocyclohexane.

41. Iodination of benzene :

$$\bigcirc$$
 + I₂ $\xrightarrow{\text{HNO}_3 \text{ or HIO}_3}$ \bigcirc + HI

Here the reaction is slow and reversible and carried out in presence of an oxidant. The HI formed is a powerful reducing halogenacid (HI > HBr > HCl > HI), due to low bond dissociation enthalpy (299 kJ/ mole), greater bond length. On oxidation with HNO₃ or HIO₃, the liberated iodine favours the reaction in forward direction.

$$2HNO_{3} + 2HI \xrightarrow{\Delta} 2NO_{2} + 2H_{2}O + I_{2}$$

$$5HI + HIO_{3} \xrightarrow{\Delta} 3H_{2}O + 3I_{2}$$

$$K = \frac{[C_{6}H_{5}I][HI]}{[C_{6}H_{6}][I_{2}]}$$

Increase of $[I_2]$ increases the dr. as K is consant the nr. must have to increase i.e. more yield of C_6H_5I also following the oxidation decrease of HI takes place. [HI] decreases i.e. $[C_6H_5I]$ increases favouring forward reaction [Lechatelier's principle].

42. $C_6H_5CH_3 + Cl_2 \xrightarrow{hv} C_6H_5CH_2Cl$ (Benzyl chloride) $C_6H_5CHCl_2$ (Benzal chloride) $C_6H_5CCl_3$ (Benzotrichloride)

Benzyl carbocation, $C_6H_5^{\oplus}CH_2$ is stabilised by resonance hence undergoes S_N^{-1} reaction easily. Due to more favourable substitution reaction these chain substituted chloro compounds of toluene acts as intermediate to get many other products. examples : (a) preparation of benzyl alcohol

$$C_6H_5CH_3 + Cl_2 \xrightarrow{hv} C_6H_5CH_2Cl + HCl$$

$$C_{g}H_{2}CH_{2}CI + KOH(aq) \longrightarrow C_{g}H_{2} - CH_{2}OH + KCI$$
(b) Preparation of benzoic acid:

$$C_{g}H_{2}CHCl_{2} + 2KOH \xrightarrow{-3KU} - C_{g}H_{2} - CH \bigvee_{OH}^{OH} \longrightarrow C_{g}H_{2}CHO$$
(c) Preparation of benzoic acid:

$$C_{g}H_{2}CCl_{3} \xrightarrow{3KWH} - C_{g}H_{3} - C(OH)_{3} \xrightarrow{-11,0} - C_{g}H_{2}COOH(or)C_{g}H_{3}COOK$$
43.

$$S_{g} - 1 \qquad S_{g} - 2$$

$$\rightarrow Unimolecular nucleophilic substitution \rightarrow Biomolecular substitution reaction
reaction
$$\rightarrow Here rate of reaction depends on concentration of both substrate and and nucleophile.
rate = k[RX] \qquad rate = k[RX] \begin{bmatrix} N\bar{u} \end{bmatrix}$$

$$\rightarrow Proceeds through two steps of which \rightarrow Ti is a single step process.
first one is slow and second step is fast.
$$(CH_{3})_{3}CBr \xrightarrow{-bw} (CH_{3})_{3}C^{+} + Br^{-}$$
I.
$$(CH_{3})_{3}CBr \xrightarrow{-bw} (CH_{3})_{3}C^{+} + Br^{-}$$
II.
$$(CH_{3})_{3}CBr \xrightarrow{-bw} (CH_{3})_{3}C OH$$
Slow step is the rate determining step.

$$\Rightarrow It proceeds through formation of an intermediate i.e. carbocation. \Rightarrow It proceeds through an unstable transition state where bond breaking and bond making take place simultaneously.$$
The case of reaction depends on stability of the carbocation. Therefore

$$R_{3} \xrightarrow{C} 2^{0} = \frac{1}{1^{0}} \qquad O_{H} \xrightarrow{-} C - X \rightarrow HO \xrightarrow{-} \frac{1}{T.S} = HO - C \xleftarrow{-} + X^{-}$$
The reactivity follows in the order :
$$\frac{1^{\circ} 2^{\circ} 2^{\circ} 3^{\circ}}{1^{\circ}} = \frac{1^{\circ} inversion of configuration}{invorm gatack of the nucleophile from the back opposite to the side of Br$$

$$\Rightarrow Racemic mixture (optically inactive) is \rightarrow Inversion of configuration takes place formed as the intermediate carbocation is planar where nucleophilic attack can occur from front and back in almost equal case.$$$$$$

44. Due to bigger size of Iodide, bond fission takes place easily hence the substitution follows in the order R - I > R - Br > RCl.

Any alkyl halide in presence of KI and dry acetone forms RI increasing the reactivity towards, substitution reaction.

 $RX(X = Cl \text{ or } Br) + KI \xrightarrow{acetone} R - I + KX$. (Filkenstein reaction)

Thus, with KI, the reactivity of alkyl halide (CL Br-) increases.

- 45. Alkyl halides (polar) are used as solvent for relatively non-polar compounds. Among the halide the better industrial solvent is chloride rather than bromide an iodide because chlorides have less boiling point (Less vander Waals force due to smaller size) and are more volatile.
- 46. $\operatorname{ROH} + \operatorname{SOCl}_2(\operatorname{thionyl} \operatorname{chloride}) \rightarrow \operatorname{RCl}_{(\ell)} + \operatorname{SO}_2 \uparrow + \operatorname{HCl} \uparrow$

Here $SO_2(g)$ and $HCl_{(g)}$ left the system as gas leaving RCl in situ. Thus it gets easily purified.

47. Carbon-iodine bond is quit weaker due to bigger bond length. The bond dissociation energy falls in the order C-Cl > C-Br > C-I. Therefore, when iodoform (CHI₃) is heated with AgNO₃ solution C–I bond gets cleaved easily producing AgI (yellow) precipitate, the C–Cl bond does not get cleaved.

B(b). Word Problem :

$$2CH_{2}-CH_{2}Br+2Na\longrightarrow CH_{3}-CH_{2}-CH_{2}-CH_{3}+2NaBr$$

$$(2\times109)=218g 58g$$

$$58 gram needs 218 gram bromoethane = 60 gram of ethane
$$55 gram of n-butane from \frac{60}{58} \times 55 = 56.8 gram (ethane)
30 gram of ethane (1 mole) occupies 22.4 L at NTP
$$56.8 of ethane will occupy \frac{22.4 \times 56.8}{30} = 42.5 L$$

$$(v) C_{4}H_{3}Br, CH_{3}-CH_{2}-CH_{2}-CH_{2}Br (1^{0})$$

$$(A) CH_{3}-CH-CH_{2}Br (1^{0}) (1-Bromo-2-methyl propane)$$

$$(B) CH_{3}-CH-CH_{2}Br (1^{0}) (1-Bromo-2-methyl propane)$$

$$(B) CH_{3}-C = CH_{2} \xrightarrow{HBP} CH_{3}-CH_{2}-CH_{3}$$

$$(CH_{3}-CH-CH_{2}Br \xrightarrow{(LH)} CH_{3}-CH_{2}-CH_{2}$$

$$(CH_{3}-CH-CH_{2}Br \xrightarrow{(LH)} CH_{3}-CH_{2}-CH_{2}$$

$$(CH_{3}-CH-CH_{2}Br \xrightarrow{(LH)} CH_{3}-CH_{2}-CH_{2}-CH_{3}$$

$$(CH_{3}-CH-CH_{2}Br \xrightarrow{(LH)} CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

$$(D) Salz - Schiemann reaction$$
The preparation of fluorobenzene form aniline is called Balz-Schiemann reaction.
$$(D) Salz - Schiemann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is called Balz-Schiemann reaction.$$

$$(D) Caltermann reaction = form aniline is formed.$$

$$(D) Caltermann reaction = form aniline is formed.$$$$$$
$$\underbrace{\bigcirc}^{+}_{N_{2}Cl} \xrightarrow{Cu/HBr} \xrightarrow{Br} + N_{2} + Cl^{2}$$

(iii) Sandmeyer reaction :

Preparation chloro, Bromo and cyano benzene (Benzonitrile) from benzene diazonium chloride is called Sandmeyer's reaction.

This is an aromatic transformation reaction, where substition reaction takes place which are not achievable by direct substitution.

(iv) Wurtz reaction involves the combination of haloalkane (RX) molecules only.

 $2RX + 2Na \xrightarrow{dryether} R - R + 2NaX$

(ix) Hunsdiecker reaction : When silver salt of a monocarboxylic acid is refluxed with bromine in presence of CCl₄ (solvent) alkyl bromide is formed with loss of one C. atom. $CH_3 - CH_2 COOAg + Br_2 \xrightarrow{CCl_4} CH_3 - CH_2Br + CO_2 \uparrow + AgBr \downarrow$ CH₃ CH₂ Br is isolateted easily. (x) Swarts reaction : (Preparation of fluoroalkane from alkyl chloride or bromide) $RX(X-Clor Br) + AgF(or Hg_2 F_2, C_0 F_2 or SbF_3)$ \longrightarrow RF + AgCl This method is preferred as fluorination of alkane with F_2 is explosive. i.e. $CH_3Br + AgF \rightarrow CH_3F + AgBr$ (xi) Frankland reaction: (Replacement of zinc is place of Na in Wurtz reaction) $C_2H_5Br + Zn \longrightarrow C_2H_5ZnBr \xrightarrow{C_2H_5Br} (C_2H_5)_2Zn + ZnBr_2$ $2C_2H_5ZnBr \longrightarrow C_2H_5C_2H_5 + ZnBr_2$ butane (xii) Corey - house Reaction (Preparation of unsymmetrical alkane) $CH_3I \xrightarrow{Li} CH_3Li \xrightarrow{CuI} (CH_3)_2 CuLi$ $(CH_3)_2$ Cu Li $\xrightarrow{C_2H_5I}$ CH₃ - C₂H₅ + LiI + CH₃ Cu In general $RX + R'X \longrightarrow R - R'$ Note: \mathbf{R}^{\prime} must be CH₂X or a primary alkyl halide, $\mathbf{R} - \mathbf{CH}_2 - \mathbf{X}$. (xiii) Bibaum - Simonin reaction When siver salt monocarboxylic acid heated with iodine, an ester is formed. $2CH_3COOAg + I_2 \rightarrow CH_3COOCH_3 + CO_2 + 2AgI$ $\begin{array}{ccc} C_{2}H_{5}COO & Ag & I \\ C_{2}H_{5}COO & Ag & I \end{array} \longrightarrow \begin{array}{ccc} C_{2}H_{5}COO_{2}CH_{5} + CO_{2} \uparrow + 2 Ag I \\ ethylpropanoate \end{array}$ (xiv) Hofmann ammonolysis reaction : When haloalkanes are heated with ethanolic ammonia in a sealed tube mixture of amines is formed. $RX + HNH_2 \xrightarrow{\text{ethanol}} RNH_2 + HX$ $RNH_2 + RX \longrightarrow R_2NH + HX$ $R_2NH + RX \longrightarrow R_3N + HX$ Statement – 01 mark B(d) What happens when : Equation - 01 mark When HBr adds to propene 2-bromopropane appears as major product as per (i) Markownikoff's rule. $CH_3 - CH = CH_2 + HBr \xrightarrow{Ad_E} CH_3 - CH - CH_3$ Br

	But in presence of organic peroxide (benzoyl peroxide) 1-Bromo propane is formed due to peroxide effect or Kharasch effect. This is free radical addition reaction.
	$CH_3 - CH = CH_2 + HBr \xrightarrow{Benzoyl}{Perovide} CH_3 - CH_2 - CH_2Br$
	(Major product)
(ii)	When ethyl alcohol is treated with PCl ₃ , ethylchloride is formed.
	$PCl_3 + 3C_2H_5OH \longrightarrow 3C_2H_5Cl + H_3PO_3$ Phosphorus acid ·
	with $PCl_5: C_2H_5OH + PCl_5 \longrightarrow C_2H_5Cl + POCl_3 + HCl$
(iii)	Here PI_3 is produced in situ which refluxed with ethyl alcohol to form ethyliodide.
	$P_4 + 6I_2 \xrightarrow{\Delta} 4PI_3$
(iv)	$CH_3 - CH_2OH + PI_3 \longrightarrow 3CH_3 CH_2 OH + H_3 PO_3$ Alkylhalide is reduced in presence of LiAlH ₄ or Zn–Cu couple & ethanol, alkane is formed.
	$RX + 2H \longrightarrow RH + HX$.
(v)	When ethylchloride is treated with silver salt of acetic acid (CH ₃ COOAg) ester, ethyl acetate is formed.
	$CH_3 - CH_2Cl + CH_3COOAg \longrightarrow CH_3COOC_2H_5 + AgCl$
	(ester)
(vi)	Formation of ether : When ethyl bromide is heated with dry silver oxide ethoxy ethane is formed.
	$2C_2H_5Br + Ag_2O \longrightarrow C_2H_5OC_2H_5 + 2AgBr$
	diethylether
(vii)	Ethyliodide with aqueous silver oxide ethyl alcohol is formed.
	$2C_2H_5I + Ag_2O + H_2O \longrightarrow 2C_2H_5OH + 2AgI$ (yellow)
(viii)	Ethyl iodide with aqueous or alcoholic KCN, ethyl cyanide is formed with increases of one C-atom in chain.
	$C_{2}H_{5}I + KCN \xrightarrow{SN} CH_{3} - CH_{2} - CN + KI$ Iodoethane Pr opanenitrile
	But with silver cyanide (alcoholic) it forms ethyisocyanide as -CN is an ambident nucleophile.
	$C_2H_5I + AgCN \longrightarrow CH_3 - CH_2NC + AgI(s)$
(ix)	Ethybromide with alcoholic KNO ₂ forms alkyl nitrite
	$C_2H_5Br + KO - N = O(alc) \xrightarrow{\Delta} C_2H_5 - O - N = O + KBr$
	But with Ag $NO_2(alc)$ it produces nitroalkane.
	$C_2H_5Br + Ag - N = O \xrightarrow{\Delta} C_2H_5 - N = O + AgBr$
	witho other

nitroethane

(x) Ethyl alcohol with iodine in presence of sodium hydroxide, separates yellow mass of iodoform.

 $CH_3 - CH_2OH + I_2 \longrightarrow CH_3CHO + 2HI$

 $CH_3CHO + 3I_2 \longrightarrow CI_3CHO + 3HI$

 $CI_{3}CHO + NaOH \longrightarrow CHI_{3} + HCOONa$

(xi) Chlorobenzene on nitration with a mixture of conc. $\rm HNO_3$ and conc. $\rm H_2SO_4$ forms -o and p- chloro nitro benzene

(xii) Chlorobenzene reacts with ammonia (aq.) at 200°C and 60 atm. presure in presence of cuprous oxide to form aniline.

$$2C_6H_5 - Cl + 2NH_3 + Cu_2O \longrightarrow 2C_6H_5 - NH_2 + Cu_2Cl_2 + H_2O$$

Haloarenes can also be converted into aniline by reacting with a mixture of sodamide and liquid ammonia at about 193K.

Chlorobenzene Aniline The reaction with NH₃ described above is nucleophilic substitution. But the reaction with NaNH₂ occurs through the formation of a **benzyne intermediate** as follows :

(xiii) Chlorobenzene with fuming sulfuric acid gives 4-chlorobenzene sulfonic acid as major product.

$$\begin{array}{l} (\mathrm{xxi}) \operatorname{CH}_{3} - \operatorname{CH} - \operatorname{CH}_{3} \xrightarrow{\operatorname{ak-ROH}} \operatorname{CH}_{3} - \operatorname{CH} = \operatorname{CH}_{2} \xrightarrow{\operatorname{III}_{B}} \\ \operatorname{CH}_{3} - \operatorname{CH}_{2} - \operatorname{CH}_{3} \operatorname{Br} \xrightarrow{\operatorname{KOH}(\mathrm{ap})} \operatorname{CH}_{3} - \operatorname{CH}_{2} - \operatorname{CH}_{3} \operatorname{OH} \\ (\mathrm{xxii}) \operatorname{CH}_{3} - \operatorname{CH}_{2} \operatorname{Br} \xrightarrow{\operatorname{ak-ROH}} \operatorname{CH}_{3} \xrightarrow{\operatorname{COCH}_{3} \xrightarrow{\operatorname{I}}} \operatorname{CI}_{3} \operatorname{COCH}_{3} \xrightarrow{\operatorname{IIII}_{A}} \operatorname{CH}_{3} \\ \xrightarrow{\operatorname{IIII}_{A}} \operatorname{OH} \\ (\mathrm{xxiii}) \operatorname{CH}_{3} - \operatorname{CH}_{2} \operatorname{Br} \xrightarrow{\operatorname{ak-ROH}} \operatorname{CH}_{2} = \operatorname{CH}_{2} \xrightarrow{\operatorname{D}}_{10} \xrightarrow{\operatorname{Be}_{1} \operatorname{CCH}_{3}} \operatorname{HC} = \operatorname{CH} \xrightarrow{\operatorname{NaOH}} \operatorname{CH}_{3} \xrightarrow{\operatorname{OOH}} \\ \operatorname{IIII}_{A} \operatorname{KOH} \xrightarrow{\operatorname{III}_{A}} \operatorname{CH}_{3} - \operatorname{CH}_{2} \operatorname{Br} \xrightarrow{\operatorname{IIII}_{A}} \operatorname{CH}_{3} \operatorname{CH}_{3} \xrightarrow{\operatorname{CH}_{3}} \operatorname{CH}_{3} \operatorname{CH}_{3} \xrightarrow{\operatorname{CH}_{3}} \operatorname{CH}_{3} \xrightarrow{\operatorname{CH}_{3}} \operatorname{CH}_{3} \operatorname{CH}_{3} \operatorname{CH}_{3} \xrightarrow{\operatorname{CH}_{3}} \operatorname{CH}_{3} \operatorname{CH}_{3}$$

$$C \Rightarrow CH_{2} = CH_{2} \qquad CH_{2} = CH_{2} + O_{3} \rightarrow \overbrace{H^{2}}^{O} - \overbrace{H^{2}}^{CH_{2}} = \frac{Z_{H,def}}{H_{2,O}} + HCHO$$

$$4 \cdot A = C_{6}H_{3}OH(phenol), \qquad \bigoplus^{OH}_{O} + COON_{H,O} \rightarrow \bigoplus^{OH}_{O} + COOII_{H,SO_{1}}^{CHOOI} \rightarrow \bigoplus^{OH}_{Methylsalicylate}$$

$$5 \cdot C_{2}H_{3} - O - C_{2}H_{3} + 2HI \longrightarrow 2 C_{2}H_{3}I + H_{2}O, \qquad (B)$$

$$C_{2}H_{3}I + Na \xrightarrow{dyndre}_{(Wurr)} - C_{4}H_{10}(n - butane)$$

$$6 \cdot C_{2}H_{3}OH + Na \longrightarrow C_{2}H_{3}O Na + \frac{1}{2}H_{2}(g)$$

$$B(b) \text{ Account for the following :}$$

$$1 \cdot CH_{3} - CH_{2} - CH_{2} - CH_{2}OH \xrightarrow{H^{2}}_{(D)} - C_{3}H_{3} + NaI$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{2}OH \xrightarrow{H^{2}}_{(D)} - CH_{3} - CH_{2} - CH_{2} - CH_{2} + H_{2}O + H_{2}O(H_{2} - CH_{2} - CH_{2} - CH_{2} + H_{2}O(H_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} + H_{2}O(H_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} + H_{2}O(H_{2} - CH_{2} - CH_{$$

3.
$$CH_3 - CH_2 - O - H \xrightarrow{H} CH_3 - CH_2 - \overset{\oplus}{O} - H \xrightarrow{-B.O} H$$

 $CH_3 - \overset{\oplus}{CH_2} \xrightarrow{-O} - H \xrightarrow{-H} CH_3 - CH_2 - O - CH_2 - CH_3$
 $2 \text{ moles of alcohol gives one mole of ether.}$
 $2CH_3 - CH_2OH \xrightarrow{-Cont, ISO_1} CH_3 - CH_2 - O - CH_2 - CH_3$
4. Victor Meyer's test :
Reagents 1º alcohol 2º-alcohol 3º alcohol
i) I_2 /red P R CH_2 OH R_2CHOH R_3COH
 $\downarrow I_2$ /red P \downarrow \downarrow \downarrow
R CH_2 I R_2CHI R_3 C I
ii) Ag NO_2 \downarrow \downarrow \downarrow \downarrow
R CH_2-NO_2 R_2 CHNO_2 R_3 C-NO_2
iii) NaNO_2 + HCI \downarrow HONO \downarrow HONO \downarrow HONO
 $=$ HONO
 $R - C - NO_2$
 $N - OH$
(Nitrolic acid) $R - C - NO_2$
 $N - OH$
(Nitrolic acid) $R - C - NO_2$
 $N - OH$
(Nitrolic acid) $R - C - NO_2$
 $N - OH$
(Nitrolic acid) $R - C - NO_2$
 $N - OH$
(Nitrolic acid) $R - C - NO_2$
 $R - C$

$$Mechanism: \mathbb{R} = \bigvee_{OH} \xrightarrow{H^{-}} \mathbb{R} = \bigvee_{H^{-}} \xrightarrow{H^{-}} \mathbb{H} \xrightarrow{H^{-}} \mathbb{R} = \bigvee_{H^{-}} \xrightarrow{H^{-}} \mathbb{H}$$

$$= \bigvee_{R \to H^{-}} \xrightarrow{\mathbb{R}} \mathbb{H} \xrightarrow{\mathbb{H}} \xrightarrow{\mathbb{H}} \mathbb{H} \xrightarrow{\mathbb{H}} \xrightarrow{\mathbb{H}} \xrightarrow{\mathbb{H}} \mathbb{H} \xrightarrow{\mathbb{H}} \mathbb{H} \xrightarrow{\mathbb{H}} \xrightarrow{\mathbb{H$$

[253]

 \rightarrow Intramolecular H-bondng

→ Moelcules are held by weak vander Waals force and hence volatile.

11.
$$C_6 H_5 - O - H$$
 (phenol)

$$\rightarrow$$
 has polar $\begin{array}{c} 3.1 & 2.1 \\ -O & -H \text{ group} \end{array}$

Electronegativity of 0, 3.1 and that of H = 2.1.

→ Molecules are much associated by stronger H-bonding (inter molecular)

→ Greater molecular association accounts for higher b.p.

12.

 $\rightarrow \mu = 1.54D$

 \rightarrow Less polar

- \rightarrow C-OH shorter bond length (sp² hybridised)
- → less solute solvent attraction and less soluble.

Here these molecules are held by stronger H-bonding & having higher b.p

 $C_6H_5 - CH_3$ (Toluene)

- \rightarrow -CH₃ group is non-polar
- → Molecules are held by weaker vander Waals force.
- → Molecules are held by weaker vander Waals force.

$$\rightarrow C \rightarrow OH$$

 sp^{3}

$$\mu = 1.71 D$$

more polar

C – OH longer bond length (sp³-hybridised)

→ more dipole-dipole attraction (H-bonding) i.e. alcohol is more soluble in water.

13. Resonance in phenol

Resonance in phenate ion

Resonating structure of phenol:

less stable resonating structure of phenol as

- (i) positive charge rests on more electronegative 'O' atom.
- (ii) Charge separation involves expense of energy.

Thus, phenol is less stable, However, phenoxide or phenate ion is more stable as :

- (i) all the forms contribute to the resonance hybrid.
- (ii) These do n't involve charge separation rather charge delocalisation.

Therefore the equibilibrium shifts more towards right favouring ionisation

increasing more of $\begin{bmatrix} H^+ \end{bmatrix}$ or $\begin{bmatrix} H_3 & O \\ D \end{bmatrix}$ and hence more acidic.

In alcohol: ROH $\xleftarrow{eqbm.}$ $R\overline{O} + H^+$ alkoxide

The alkoxide ion $R - \overline{O}$ is unstable due to +I effect and the equilibrium is more

towards left reducing the $\left\lceil H^{+} \right\rceil$ and hence less acidic / neutral.

14. Acids are \overline{e} acceptors (Lewis concept), the electron accepting tendency increases with the presence of electron withdrawing group $-NO_2$ group is an ewg as N & O are both more electronegative. This is the reason why nitrophenols are more acidic than phenols. Further more is the stability of conjugate base more is the acidic nature. Here p-nitro phenoxide has more resonating structures hence more stable the phenoxide itself. At p-position greater dispersal of (–) charge on 'O' takes place than $-NO_2$ group at o-position.

That is the reason why p-nitrophenol is more acidic than phenol i.e. p > o - > m - nitro phenol

The lower acidity of metanitro isomer is due to the fact that m-nitro phenoxide anion is stabilised by inductive effect only and no resonance effect is operating due to absence of conjugate system.

(no further resonance with NO₂ group)

compound (Violet)

15. Phenols with neutral FeCl₃ generally give violet colouration or even red depending on the structure due to formation a complex salt.

$$\begin{aligned} & \left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \\ \left(\end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \left(\end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \left(\end{array} \\ \left(\end{array} \right) \\ \\ \left(\end{array} \\ \left(\begin{array}{c} \end{array} \\ \left(\end{array} \\ \left(\end{array} \right) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \right) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \right) \\ \left(\end{array} \\ \left(\end{array} \right) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \right) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \right) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\bigg) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\bigg) \\ \left(\end{array} \right) \\ \left(\end{array} \\ \left(\bigg) \\ \left(\bigg) \\ \left(\bigg) \\ \left(\bigg) \\ \left(\end{array} \\ \left(\bigg) \\ \left$$

$$2 \times \left[MnO_{4}^{-} + \overline{e} \longrightarrow MnO_{4}^{2} \right]$$

$$C_{3}H_{7} - CH_{2}OH \longrightarrow C_{3}H_{7}CHO + 2H^{+} + 2e^{-}$$
Butanal

or with acidified KMnO_4 : $\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \longrightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}$

26. Tertiary butylalcohol with, Lucas reagent follows fission C → OH bond and in the order 3⁰ > 2⁰ > 1⁰. The alkyl groups are electron releasing group and influence + I effect. This polarised C–O bond and stabilised the 3⁰-carbocation which readily gives turbidity with C⁺ (HCl - ZnCl₂).

$$\begin{array}{c} CH_{3} \\ CH_{3} - C - OH + H^{+} \\ \downarrow \\ CH_{3} \end{array} \xrightarrow{CH_{3}} CH_{3} - C \\ \downarrow \\ CH_{3} \end{array} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} (CH_{3})_{3} CCl. \\ \downarrow \oplus \\ CH_{3} \end{array} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} (CH_{3})_{3} CCl. \\ \downarrow \oplus \\ CH_{3} \xrightarrow{CH_{3}} CH_$$

Ethyl alcohol is polar and exhibits dipole-dipole interaction i.e. H–bond. Due to much association or greater intermolecular force of attraction it exhibits in liquid form.
 CH₃-O-CH₃, ether is non-polar, molecular association is less stronger due to weaker

- 30. Due to resonance :
- (i) C-O bond developes π-charate
 (ii) O-acquire +ve charge
- (iii) C–O bond length decreases increasing bond strength.

By Such substitution is denied.

Resonating structures of phenol;

Fig: Ref. question no. 13.

31. Dehydration of alcohol is an elimination reaction via formation of carbocation. But with HCl alcohol it gives alkylchloride (R–Cl)

 HNO_3 is a better oxidising agent, it may oxidise alcohol to carboxylic acid via aldehyde, further nitroester may be formed.

On the other hand conc. H_2SO_4 is a better dehydrating agent.

33. For reactivity i.e. attack of electrophile the ring must be rich in $\overline{e}(s)$ i.e. electron releasing group like -OH, $-CH_3$ activates the ring and favours attack of electrophile (E⁺). Chlorobenzene is least reactive as Cl(3.0) is more electronegative than H(2.1), thus it has tendency to act as EWG, reducing \overline{e} density of the ring making chlorobenzene least ractive.

On the other hand the hydroxyl group in phenol can delocalise one of the lone pairs on 'O' atom into the ring activating the ring favouring S_E . Thus, phenol > Toluene > benzene > chlorobenzene.

34. Acidic nature : $CF_3 CH_2OH > CH_3 - CH_2 OH$

- I effect (F = 4.0) increases the acidic nature as it reduces the \overline{e} density 'O' atom of the alcohol favouring release of proton.

The lone pair on 'O' is used for delocalisation in the benzene ring of phenol developing a π - character between C–OH bond & +ve charge on 'O' as well for which is less polar.

 \rightarrow Dipole moment, $\mu = 1.54 \text{ D}$

 \rightarrow Benzene ring shows \overline{e} with drawing effect.

$$\overset{^{\delta_{+}}}{\underset{sp^{3}}{\overset{^{\delta_{-}}}{\rightarrow}}} \overset{^{\delta_{-}}}{O}H$$

Here in methanol C–OH bond is longer as C is sp³ hybridised. Here C is partially +vely charged $(\delta +)$ & 'O' is partially negatively charged $(\delta -)$ is 'O' (3.5) has higher electronegativily than C(2.5). Hence methanol is much polar. Dipolemoment, $\mu = 1.71D$

 \rightarrow -CH₃ group shows electron releasing effect.

36. $R \rightarrow OH$

Alkyl group (-R) is electron releasing & increases \overline{e} – density on 'O'–atom favouring protonation.

$$\begin{array}{ccc} \operatorname{ROH} + \operatorname{H}^{+} & \longrightarrow & \operatorname{R} - \operatorname{O} - \operatorname{H} \left(\operatorname{Protonated alcohol} \right) \\ & & | \\ & H \end{array}$$

Electron with drawing effect of ring decreases \overline{e} -dnsity on 'O', hence can't be protonated.

37. Phenol is a weaker acid. It is weaker than carbonic acid (H_2CO_3) and hence fails to liberate CO_2 from sodium bicarbonate. Had it been stronger one,

$$HC\overline{O}_3 + (H^+) \longrightarrow CO_2 + H_2O$$

38. Ether $(C_2H_5OC_2H_5)$ does not have replaceable hydrogen. Hence ether can be dried by sodium whereas alcohol can't be dried by sodium metal as it reacts to liberate hydrogen (g).

$$\operatorname{ROH} + \operatorname{Na} \longrightarrow \operatorname{RONa} + \frac{1}{2} \operatorname{H}_2(g)$$

39. Anhydrous calcium chloride with ethanol / alcohol forms addition compounds, i.e. alcoholates, for which it's not used to dry alcohol.

e.g. $CaCl_2 + 4 C_2H_5OH \longrightarrow CaCl_2.4C_2H_5OH$

No removal of water molecule Addition compound

No removal of water moelcule.

40. Reimer - Tiemann reaction :

When phenol react with alkaline carbon tetrachloride forms salicyclic acid.

Group-B (d) Answer the following :								
1.	Alcohols :			Phe	Phenols			
	a.	Alcohols don't have any action on litmus.		a.	Phenols turn blue litmus red as these behave acidic			
	b.	Don't react with NaOH/KOH			Phenols are neutralised by NaOH to form sodium phenoxide (salt)			
	C.	Alcohols don't respond dye test.			Phenols form coloured dye (azodye)			
	a.	Liberman's test : Don't respond.			When phenol is treated with NaNO dissolved in conc. H_2SO_4 a red colour appears which turns blue on treating with NaOH(Aq.)			
2.	(i)	Phenol	(ii) p-nitrophenol	(iii)	Phenol			
3.	*	Victor M	eyer's test Refer Group	-B(b)	. Q. No. 4			
	*	Lucas Tes	st :					
	Rea	gent	1 ⁰ alcohol		2° alcohol 3° alcohol			
	Cor	nc HCl	When Lucas reagent is	5	Turbidity appears When Lucas reagen			
	Anh	ny. ZnCl ₂	added to 1º alcohol		after five minutes is added to 3° -			
			turbdity appears		alcohol turbidity appears instantly.			
			on heating.					
			RCH ₂ OH + HCl		$\mathbf{P} = \mathbf{C}(\mathbf{OH}) + \mathbf{HC}$			
			$\xrightarrow{\text{ZnCl}_2} \text{RCH}_2\text{Cl} + \text{H}_2$,0	$R_3 = (OII) + IICI$			
4	Ale	ohols (R_C		2	$\rightarrow R_3 \cup C_1 + R_2 \cup C_2$ Ethers (ROR)			
1.	i)	Alcohols	are readily soluble in wat	er	(i) Except dimethyl ether the res			
		due to inte	ermoelcular H-bonding		are not miscible with water.			
	ï)	$H_2(g)$ is 1	iberated out when alcoho	ols	(ii) Ethers don't react.			
		reacts wit	in active metals like Na.					
		ROH + N	$\operatorname{Na} \longrightarrow \operatorname{RONa} + \frac{1}{2} \operatorname{H}_2^2$	↑				
	iii)	Alcohols	readily combine with PC	1 to	(iii) Ethers react with PCl at high			
)	giver alky	l chloride.	-5	temperature ROR + PCl _s			
		ROH + P	$PCl_5 \longrightarrow RCl + POCl_3$	+ HC	S1			
	$\longrightarrow 2RCl + POCl_3$							
	iv)	Alcohols	are readily oxidised to al	dehyd	le (iv) Ethers are resistant to			
		or ketone	depending on the nature		oxidation.			
5.	Dur	ing destruc	 ctive distillation of wood	l the c	condensate(l) collected over wood tar is			
	called pyroligneous acid. In addition to water it contains methyl alcohol (2–4%), aceton							
	(0.5%) acetic acid (10%)							
6.	Eth	rice, wheat etc. by fermantation which is a process of slow decomposition of complex						
	by catalytic action of enzymes. The whole							
	synthetic process involved (i) Saccharification (ii) alcoholic fermentation (iii) distillation							

6

[262]

 $+ nH_2O \xrightarrow{diastase} n C_{12}H_{22} O_{11}$ $2(C_6H_{10}O_5)_{n}$ paste of starch materials Maltose (Mash) Fermentation: $C_{12}H_{22} O_{11} + H_2O \xrightarrow{Maltase} 2 C_6 H_{12} O_6$ Maltose (glucose) $C_6H_{12} O_6 + H_2O \xrightarrow{Zymese} 2 C_2H_5 OH + 2CO_2 \uparrow$ $ROCH_3 \xrightarrow{HI} CH_3I \xrightarrow{AgNO_3} AgI_{(s)}$ From weight of AgI the no. of -OCH₃ in the given compound can be calculated quantitatively. 2.68 gram of compound (A) gives 14.08 gram of AgI 134 gram (1 mole) of 'A' gives $\frac{14.08}{2.68} \times 134 = 704$ gram AgI 704 gram AgI = $\frac{704}{235}$ moles = 3 moles (mol. mass AgI = 235 g.mol⁻¹) The number of $-OCH_2$ group in A = 3. *.*.. 8. Preparation of acetaldehyde from ethylalcohol: (i) Oxidation : Primary alcohol upon oxidation with $(MnO_4^- + H^+)$ or $(Cr_2O_7^{2-} + H^+)$. Aldehyde formed by this process is to be removed by distillation from reaction mixture as soon as it's formed in order to avoid further oxidation to carboxylic acid. Aldehyde is fractionated first as it has less b.p. than alcohol $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_3O$ R CH₂OH \longrightarrow RCHO + 2H⁺ + 2(\overline{e}) Mild oxidising agent like Collin's agent (CrO₃.2C₅H₅N) or PCC, pyridinium chloro chromate, CrO₃. C₅H₅N.HCl can be choosen as selective oxidising agent which converts 1º alcohol to aldehyde prefearably. (ii) Catalytic dehydrogenation : When 1^o alcohol is heated with copper at 573 K Η aldehydeis formed on removal of $H_2(g)$. $R - \overset{|}{C} - OH \xrightarrow{Cu} RCHO + H_2(g)$ Η 9. Alcoholysis of acid & its derivatives : When acid or its derivatives are allowed to react with alcohol ester is formed. $CH_3 - CH_2OH + CH_3COOH \xrightarrow{H_2SO_4(conc.)} CH_3COO C_2 H_5 + H_2O$ Ethylethanoate $CH_3 - CH_2OH + CH_3COCl \longrightarrow CH_3COO C_2 H_5 + HCl$

$$\begin{array}{cccc} CH_{3}CO & H & OCH_{3} \\ O & & \\ O & & \\ CH_{3}CO & H & OCH_{3} \end{array} \longrightarrow & 2CH_{3}COO CH_{3} + H_{2}O \\ & & \\ (Anhydride) \\ CH_{3} - CH_{2}OH + CH_{3}CO NH_{2} \longrightarrow CH_{3}COC_{2} H_{5} + NH_{3} \\ & & \\ & ethylethanoate \end{array}$$

Ease of esterification : 1^0 alcohol > 2^0 > 3^0 and among the acid derivates : acid chloride > > acid anhydride > ester > amide.

Mechanism:
$$R \xrightarrow{O} 18 \xrightarrow{O} 18 \xrightarrow{O} 18$$

 $H^+ \xrightarrow{H^+} R \xrightarrow{O} R \xrightarrow{O} R \xrightarrow{H^+} R \xrightarrow{O} R \xrightarrow{O} R \xrightarrow{H^+} R \xrightarrow{O} R$

This shows that in $\operatorname{RO}^{18} \xrightarrow{18} H$, $\operatorname{O} \xrightarrow{1} H$ bond fission occurs not $\operatorname{C} \xrightarrow{1} OH$ of alcohol. so it depeds on acidic nature of alcohol, so the ease of esferification is

 $CH_{3}OH > CH_{3}CH_{2}OH > (CH_{3})_{2}CHOH > (CH_{3})_{3}COH$

(This is also order of their acidic nature)

Thus, esterification involves –OH of acid and –H of alcohol. This process is called isotopic labelling.

Refer Q.No. - 6 [Group B(B)]

10.

$$CH_{3}-C\overset{O}{\longleftarrow} CH_{3} \longrightarrow CH_{3}-\overset{O}{\longleftarrow} CH_{3} \longrightarrow CH_{3}-\overset{O}{\longleftarrow} CH_{3} \longrightarrow CH_{3}-\overset{O}{\longleftarrow} CH_{3} \longrightarrow CH_{3}-C\overset{O}{\longleftarrow} CH_{3} \longrightarrow CH_{3}-C\overset{O}{\longrightarrow} CH_{3}$$

$$CH_{3} - \overset{\parallel}{C} - Cl + C_{2}H_{5} - OH \xrightarrow{H^{+}} CH_{3} - \overset{\parallel}{C} - OC_{2}H_{5} + HC1$$

Ethylacetate

Sample-I. Methanol : Sample is heated with salicylic acid and conc. sulfuric acid, a chatacteristic smell of oil of wintergreen (amritanjan smell)

Sample II Ethanol. If the sample responds to iodoform test it's to be labelled sample-II . i.e. ethanol with alkaline iodine is warmed to form yellow mass of iodoform.

Sample III If the sample does not respond to above two tests, it's to be labelled Sample-III.

11.
$$(CH_3 - CH_2OH + conc.H_2SO_4) \xrightarrow{170^0} CH_2 = CH_2(B)$$

Cold ethanol is taken as the reaction is exothermic.

 $\xrightarrow{100^{\circ}C} CH_{5} - CH_{2} HSO_{4}(C)$ Ethyl hydrogen sulfate

$$\frac{1}{160^{\circ}} C_{2}H_{5}O - C_{2}H_{5}(D)$$
Diethylether
12. Ceric ammonium nitrate test:
When a few drops of alcohol (-OH group) is added to the aqueous solution of
cerie ammonium nitrate, the orange colour changes to red.
(NH₄)₂ Ce(NO₃)₆ + 2 ROH \longrightarrow Ce(NO₃)₄(ROH)₂ + 2NH₄NO₃
(orange) (red)
13. (i) Diethylether on acidic hydrolysis gives ethyl alcohol.
C₂H₃OC₂H₃ + H₂O $\xrightarrow{\text{all}(E_{2}O_{1}A)}$ 2C₂H₃ \rightarrow OH
(ii) With cold cone H₃O₄ if forms oxonium ion, but on heating cleavage of C · O
bond takes place to form alcohol and – hydrogen sulfate
C₂H₅O $\xrightarrow{\text{d}}$ $\xrightarrow{\text{f}}$ C₂H₃ $\xrightarrow{\text{d}}$ C₂H₃OH + C₂H₃H SO₄
(iii) With acetylacting agents: (i) CH₂COC1 (ii) (CH₂CO)₂O
C₂H₃O $-C_{2}H_{3}$ + CH₃COC1 $\xrightarrow{\text{all}(E_{2}O_{1}A)}$ C₂H₃Cl₄CH CH₃COOC₂H₅
(ester)
C₂H₃ $-O - C_{2}H_{3}$ + (CH₃CO)₂O \longrightarrow 2CH₁COC0C₂H₅
(ester)
C₂H₃ $-O - C_{2}H_{3}$ + (CH₃CO)₂O \longrightarrow 2CH₃COC1 $-O - CH_{2}CH_{3}$
(iv) Diethyl ether recarts differently with Chlorine in dark and in presence of light (with
excess chlorine)
CH₃ $- CH_{2} - O - CH_{2} - CH_{3} \xrightarrow{\text{cl}_{1}/\text{dust}} CH_{3}CHCl - O - CH_{2}CH_{3}$
(iv) Diethyl ether recarts differently with Chlorine in dark and in presence of light (with
excess chlorine)
CH₃ $- CH_{2} - O - CH_{2} - CH_{3} \xrightarrow{\text{cl}_{1}/\text{dust}} CH_{3}CHCl - O - CH_{2}CH_{3}$
(iv) Diethylether
(CH₃ $- CH_{2} - O - CH_{2} - O - CCl_{2}CCl_{3} + 10HCl
excess
14. (i) CH3 $- CH_{2}Br + CH_{3}CH_{2}ONa \longrightarrow CH_{3} - CH_{2} - O - Ce_{1}H_{3} + NaBr
Bromoethane Sod, ethoxide
(ii) CH3 $- CH_{3}Br + C_{3}H_{3}ONa \longrightarrow CH_{3} - CH_{2} - O - Ce_{6}H_{5} + NaBr
Bromoethane Sod, phenoxide
(iii) CH3 $- CH_{2} - CH_{2}Br + Na O - CH_{2} - CH_{2} - CH_{3} + NaBr
(Least crowding effect for SN $- 2$ reactoon)
(iv) CH₃ $- CH_{2} - CH_{2}Br + Na O - CH_{2} - CH_{2} - CH_{3} - CH_{2} - CH_{2} - CH_{3} - CH_{3}$$$$$

15. (i) When anisole is treated with a mixture of conc. HNO₃ and conc. H₂SO₄ a mixture of ortho and para-nitroanisole is formed where p-nitroanisole appears as major product. $HNO_3 + H_2SO_4 \longrightarrow \overset{+}{N}O_2 + HS\overline{O}_4 + H_2O$ electrophile OCH₃ OCH₃ Here –OCH₃ is an electron releasing group that activates the ring facilitating attack of NO_{2}^{+} (electrophile) at o – and p – positions. Bromination of anisole in presence of ethanoic acid and Bromine even in absence (ii) of Fe³⁺ bromide catalyst p-isomer is obtained in 90% yield due to less steric factor. OCH₂ OCH₃ OCH₃ -Br (Minor) (Major) (i) $CH_3 - CH_2 - CH - CH_2 - OCH_3 + HI \xrightarrow{SN_2} CH_3I + CH_3 - CH - CH_2 - CH_2OH$ 16. ĊH, ĊH, I⁻ is a good nucleophile. Due to steric hindrances it attacks the smaller alkyl group following $S_N - 2$ mechanism. CH₃ (ii) $CH_3 - \overset{i}{C} - CH_2 CH_3 + HI \longrightarrow CH_3 - CH_2 - CH_2 OH + CH_3 - \overset{i}{C} - CH_2 - CH_3$ \dot{O} - CH₂ - CH₂CH₃ (iii) $\langle \bigcirc \rangle$ - CH₂ - O - $\langle \bigcirc \rangle$ + HI - $\rightarrow \langle \bigcirc \rangle$ - CH₂ - I + $\langle \bigcirc \rangle$ - OH (iv) $CH_3 - O - CH_2 - CH_2 - CH_3 + HI \longrightarrow CH_3I + CH_3 - CH_2 - CH_2 - OH_2 - OH_3 - CH_2 - CH_2 - OH_3 - CH_3 -$ (v) $CH_3 - \overset{|}{\overset{C}{C}} - O \quad C_2H_5 + HI \xrightarrow{S_N 1} \quad CH_3 - \overset{|}{\overset{C}{C}} - I \quad + C_2H_5 - OH$ $\overset{|}{\overset{C}{\overset{C}{H}}} CH_3$

- hydroxybenzene sulfonic acid. This is followed by nitration with conc HNO_3 where simultaneously replacement of $-SO_3H$ groups by $-NO_2$ group takes place. The prsence of $-SO_3H$ group in the ring checks its oxidation to a great extent during nitration (with HNO_3)
- 20. (i) $K_2 Cr_2 O_7 + H_2 SO_4$
 - (ii) PCC (or) Jone's reagent
 - (iii) Bromine water
 - (iv) $\operatorname{Br}_2 / \operatorname{CS}_2$
 - (v) alkaline KMnO₄
 - (vi) LiAlH₄ or NaBH₄

[269]

Hence, p-toluic acid is less acidic than benzoic acid. The ortho-isomer of every substituted benzoic acid is strongest acid due to ortho effect. $CH_3 - C$ \longrightarrow $CH_3 - C$ $+ H^+$ 7. The conjugate base CH₃COO⁻ is stabilised by resonance and the equilibrium shifts towards right. The proton donating tendency increases and becomes acidic. $CH_3 - C_{\sqrt{2}} \longrightarrow CH_3 - C_{\sqrt{2}} = CH_3 - C_{\sqrt{2}} \Theta$ In alcohol – R – OH \implies RO⁻ + H⁺ RO⁻ is unstable due to +I effect. Equilibrium shifts towards left and less acidic. 8. Resonance effect. In carboxylate (more stable conj. base) the -ve charge dispersed between two electronegative o-atom. 9. Here the carbonyl groups gets protonated and gets stabilised by resonance. So a base. Decarboxylation takes place, $CH_3 - C - O \longrightarrow CH_3 + CO_2$. 10. 11. Decarboxylation. RCOO. \longrightarrow .R + CO₂, R + Br₂ \longrightarrow RBr + Br. 12. $HCOOH + O \longrightarrow CO_2 + H_2O$. As oxidises easily acts as reducing agent. 13. Formic acid (reductant) responds test with Fehling solution, mercuric chloride. $HCOOH + 2HgCl_2 \longrightarrow CO_2 + Hg_2Cl_2 \downarrow + 2HCl$ 14. Due to resonance. - COOH is an EWG. de-activating group and m-directing 15. B(b) For name reactions refer text. B(c) For distinctions refer text. B(d) Conversion : $CH_{3}COOH \xrightarrow{Cl_{2}red P} Cl - CH_{2}COOH \xrightarrow{KCN} CN - CH_{2}COOH \xrightarrow{H_{3}O^{+}} \Delta$ 1. HOOC-CH₂-COOH (propane-1, 3-dioicacid) $HCOOH \xrightarrow{Ca(OH)_2} \xrightarrow{HCOO^-} Ca^{2+} \xrightarrow{(CH_3COO)_2Ca} CH_3CHO \xrightarrow{Tollen's} CH_3COOH$ 2. $CH_{3}COOH \xrightarrow{\text{LiAlH}_{4}} CH_{3} - CH_{2}OH \xrightarrow{\text{Conc.H}_{2}SO_{4}} CH_{2} = CH_{2} \xrightarrow{\text{KMnO}_{4}} HCOOH_{H_{2}SO_{4}} HCOOH_{2}$ 3. $CH_{3}COOH \xrightarrow{Cl_{2}} Cl - CH_{2}COOH \xrightarrow{NH_{3}(alc.)} NH_{2} - CH_{2}COOH$ 4. $CH_{2}COOH \xrightarrow{\text{LiAlH}_{4}} CH_{3} - CH_{2}OH \xrightarrow{\text{SOCl}_{2}} CH_{3}CH_{2}CI$ 5. $\xrightarrow{\text{KCN}} \text{CH}_3 - \text{CH}_2 - \text{CN} \xrightarrow{\text{H}_3\text{O}^+} \text{CH}_3 - \text{CH}_2\text{COOH}$

Unit - XIII

B(a) Answer the following :

- 1. Refer text.
- 2. Refer text
- 3. Refer text
- 4. (i) When nitroethane is treated with $LiAlH_4$ in presence of ether it's reduced to ethanamine.

$$CH_3 - CH_2 NO_2 + 6(H) \xrightarrow{\text{LiAH}_4} CH_3 - CH_2 - NH_2 + 2H_2O$$

(ii) BDC couples with phenol in weekly alkaline medium (pH=9-10) orange dye of parahydroxy azobenzene is formed

$$C_6H_5N_2Cl + \bigcirc -OH \xrightarrow{OH^-} \bigcirc -N=N-\bigcirc -OH$$

Vapourphase nitrition : Lower members of alkanes can be nitrated by vapourphase nitration i.e. by heating a gaseous mixture of hydrocarbon and nitric acid vapoors at 673 – 773 K

e.g.
$$CH_3 - CH_2 - CH_3 \xrightarrow{HONO_2} CH_5 - CH_2 - CH_2NO_2 + CH_3 - CH - CH_3$$

$$+CH_5 - CH_2NO_2 + CH_3NO_2$$

(a mixture of nitroalkanes)

Base is ē donor, in aromatic case the lone pair on N-gets declocalised reducing the basic nature on resonance. Aliphatic amine more basic due to +I effect.
 Resonating structures : (See text)

- 8. Refer text. (Sulfanilic acid is formed)
- 9. Methylamine responds to carbylamine test.
- 10. (a) $(CH_3)_3N(g) > (CH_3)_2NH > CH_3NH_2 > NH_3$
 - (b) More is the +I effect more is basic nature in gaseous phase.
- 11. 1^o-amine is formed. RNCO + 2KOH \longrightarrow RNH₂ + K₂CO₃
- 12. Hinsberg test. (3° amine fails to react with Hinsberg reagent, $C_6H_5SO_2Cl$.)
- Greater extent of H-bonding in aliphatic 1⁰-amine. Aniline due to its higher molecular mass and incease of size of hydrophobic aryl part aromatic amine less soluble. (More soluble in presence of HCl due to formation of salt, aniline hydrochoride)

14. Azodye test is responded by aniline.
15. CH₃NH₂ + H₂O → CH₃ [']N H₃(OH)⁻
$$\xrightarrow{\text{EcL}(hq_1)} Fe(OH)_{1} \downarrow$$

reddish brown
16. Refer text. 2⁰ amine $\xrightarrow{\text{HONO}}$ nitrosoamine $\xrightarrow{\text{pheod}}$ green solution $\xrightarrow{\text{dheo}}$
red colour $\xrightarrow{\text{NANO}}$ deep blue.
17. C₆H₃NH₂ $\xrightarrow{\text{NANO}} Ce_H_3$ N₂Cl $\xrightarrow{\text{warm}} C_6$ H₃OH
B(b) Missing compounds (ABCD):
i) CH₃ - CH₂I → CH₃CH₂CN(A) → CH₃CONH₂(B) → CH₃NH₂
ii) C₆H₃N₂Cl → Ce₆H₃CN → Ce₆H₃COOH → Ce₆H₃CONH₂
(C)
ii) CH₃ - CH₂I → CH₃-CH₂CN(A) → CH₃-CCH₃ - CH₂ - CH₂NH₂
 $\xrightarrow{\text{OCH}_3 - \text{CH}_2 - \text{CH}_2 \text{CH}_3 - \text{CH}_2 \text{CN}(A) \rightarrow \text{CH}_3 - \text{CH}_3 - \text{CH}_2 - \text{CH}_2 \text{NH}_2$
ii) C₆H₃NO₂ → Ce₆H₅NH₂(A) → Ce₆H₃N₂Cl(B) → Ce₆H₃OH(C)
v) C H₃NO₂ → Ce₆H₅NH₂(A) → Ce₆H₃N₂Cl(B) → Ce₆H₃OH(C)
v) C H₃NO₂ → Ce₆H₅NH₂(A) → Ce₆H₃N₂Cl(B) → Ce₆H₃OH₂ → CH₃ + CH₃OH(C)
ii) CH₃ - CH₂OH $\xrightarrow{\text{KCeOO}_3}$ CH₃COOH $\xrightarrow{\text{H}_3N_3}$ CH₃CONH₂ $\xrightarrow{\text{KOH}}$ CH₃NH₂
ii) CH₃ - CH₂OH $\xrightarrow{\text{KCeOO}_3}$ CH₃COOH $\xrightarrow{\text{H}_3N_3}$ CH₃CONH₂ $\xrightarrow{\text{KOH}}$ CH₃NH₂
ii) CH₃ - CH₂ONH₂ $\xrightarrow{\text{KOH}_3O(6)}$ CH₃ - CH₃ - (CH₂)₄ - NH₂ (Pentan-1-amine)
iii) CH₃ - CH₂ - NH₂ $\xrightarrow{\text{KOH}_3O(6)}$ CH₃ - CH₃ - CH₃COH $\xrightarrow{\text{H}_3N_3}$ CH₃COOH $\xrightarrow{\text{H}_3N_3}$ CH₃CONH₂ $\xrightarrow{\text{KOH}_3O(6)}$ CH₃ - CH₃ - CH₃CH₃CH₃ - CH₃CO₃
(V) CH₃ - NH₂ $\xrightarrow{\text{KOH}_3O(4)}$ CH₃ - CH₃ - CH₃OH $\xrightarrow{\text{KOH}_3O(4)}$ CH₃ - CH₃ - CH₂ - NH₂
 $\xrightarrow{\text{HONO}_3O(4)}$ CH₃ - CH₂ - OH₂ $\xrightarrow{\text{KOH}_3O(4)}$ CH₃ - CH₃ CH₃ - CH₃ - CH₃ - CH₂ - NH₂
(V) CH₃ - NO₂ $\xrightarrow{\text{So}(HC_3}$ CH₃ - NH₂ $\xrightarrow{\text{CH}_3DC_3}$ CH₃ - CH₃ - CH₂ - NH₂
 $\xrightarrow{\text{HONO}_3O(4)}$ CH₃ - CH₂ - OH $\xrightarrow{\text{K}_3CN_3}$ CH₃ - CH₃ - CH₂ - CH₂ - NH₂
 $\xrightarrow{\text{HONO}_3O(4)}$ CH₃ - CH₂ - OH $\xrightarrow{\text{H}_3DC_3}$ CH₃ - CH₃ - CH₃ - CH₂ - CH₂ - NH₂

(Refer text)

Unit-XIV

1. D. glucose exists in two cyclic forms α - and β - in which aldehyde group is involved in the ring formation and is not free. Therefore, it does not react with NaHSO₃, However, with reagents like HCN and phenylhydrazine, the ring structure cleaves and the aldehyde group becomes free and does react with HCN.

[276]

2. Hormones : A hormone is any member of a class of signalling molecules in multicellular organisms, that are transported by intricate biological process to distant organs to regulate physiology and behaviour. Hormone are required for the correct development of animals, plants and fungi.

e.g. testosterone male sex hormone.

- 3. **Fibrous proteins**
 - Polypeptide chains run parallel to each other, held by hydrogen and disulfidebonds
 - ii) They have thread like structure
 - iii) These are insoluble in water
 - Ex. Keratin (in hair wool, silk),

Myosin (present in muscles)

- **Globular protein**
- (i) Polypeptide chains are arranged as coils.
- (ii) They have spherical shape.
- (iii) These are water soluble.
- Ex. Insulin, albumin
- 4. Enzymes : Virtually all reactions that are taking place in the body are calalysed by enzymes. Thus, these may be called bio-catalyst. So enzymes are biocatysts affecting bio chemical reactions in living beings. These are proteins produced in the cell functions within the cell itself, called endoenzymes, e.g. endoalmylase breaks down large amylose molecule to shorter dextrin chains. However exoenzymes are extra cellular. e.g. enzymes related to digestive system.

Characteristics of enzyme :

- (i) Chemical nature. These are complex macromolecules (proteins) with high molecular mass.
- (ii) Specificity : Each enzyme catalyse only one specific reaction. Thus enzymes are large in number (3000 enzymes) to catalyse biological reactions.

Some examples :	Enzyme	Reaction catalysed
	Urease	$\text{Urea} \rightarrow \text{O}_2 + \text{NH}_3$
	Invertase	sucrose \rightarrow glucose + fructose
	Maltase	Maltose \rightarrow glucose + fructose
	Lactase	Lactose \rightarrow glucose + galactose
	Anylase	Star $\rightarrow \alpha$ – glucose
	Carbonic anhydrase	$H_2CO_3 \rightarrow CO_2 + H_2O$
	Pepsin	Protein \rightarrow amino acid
	Trypsin	Protein \rightarrow amino acid
	Nucleases	DNA, RNA \rightarrow nucleotide

(iii) Temperature and pH sensitivity : The enzymes function, best at an optimum temperature ($25^{\circ}C - 40^{\circ}C$). The activity stops at 0° and $80^{\circ}C$. Similarly optimum pH is (6–7.7)

- (iv) Efficiency : Efficiency of an enzyme is measured by turn over number i.e. the number of molecules of a substance acted by one molecule of enzyme per minute. These are efficient catalysts speeding up the bio-reaction by a factor upto 10²⁰ (times).
- 5. (i) Peptide linkage : The chemical bond formed between the carboxyl group (–COOH) and amino (–NH₂) groups of neighbouring aminoacid, constituting primary linkage of all protein structure. Living organisms use peptide bonds to form long chains of amino acids known as proteins.

$$-\text{COOH} + \text{H}_2\text{N} - \xrightarrow[-\text{H}_2\text{O}]{} \longrightarrow \begin{array}{c} \text{O} \\ \parallel \\ -\text{C} - \text{NH} - \\ \text{Peptide linkage} \end{array}$$

(ii) **Primary structure :** Proteins may have one more polypeptide chains. Each polypeptide in a protein has aminoacids linked with each other in a specific sequence and it is this sequence of amino acids i.e. said to be primary structure of that protein. Change in sequence of amino acids creates a different protein.

e.g. haemoglobin of blood that carries oxygen consists of 574 amino acid units

Normal haemoglobin :-val - His - Leu - Thr-Pro-(Glu)-Glu-lys-Sickle cell haemoglobin :-val - His - Leu - Thr - Pro - Val - Glu - Lys

Val-Valine $\begin{array}{c} R \\ H_2N - C - COOH \\ H \end{array} \qquad R = (CH_3)_2CH - H \end{array}$

His – Histidine Leu-Leucine Thr–Threonine Pro-Proline Glu–Glutamic acid

Lys-Lysine

(iii) Denaturation:

Native protein : Protein found in biologycals ystem with unique three dimensional structure and biological activity is called a native protein.

When a protein in native state is subjected to physical changes like change is temperature, chemical changes like change is pH, bacterial effect disruption in H-bond takes place. Due to this, globules unfold and helix get uncoiled and protein loses its biological activity.

This is called denaturation of protein.

During denaturation 2^0 and 3^0 structures are destroyed but 1^0 structure remains intact
Example: (i) Curdling of milk due to formation of Lactic acid by bacteria present in milk. (ii) Coagulation of egg while on boiling. (iv) Isoelectric point α – amino acid $R - CH - COO^{-} \longleftrightarrow R - CH - COO^{-} \xrightarrow{\text{in acidic}}_{\text{medium}(H^{+})} \xrightarrow{R} - CH - COOH$ $\downarrow H_{3}$ $\downarrow H_{3}$ $\downarrow H_$

on a passage of electricity through amino acid, it moves towards cathode(-) in acidic medium ($p^{H} < 7$) and towards anode (+) is alkaline medium ($p^{H} > 7$). At certain the p^{H} the zwitter ion (dipolar ion) behaves neutral never migrates to any eelctrode on passing electricity. The p^{H} at which no migration takes place is called **isoelectric point**.

The isoelectric points of different α -amino acids are in the p^H range of 5.5 to 6.3.

- 6. α and β forms of D(+) glucose are interconvertible through open chain structure. α . form with specific rotation (111°), β form has specific rotation 19.2° on being dissolved in water. Due to inter conversion in aq. medium the specific rotation increases or decreases till the equilibrium mixture acquires specific rotation of about + 52.2° (36% α form and 63.5% β form and 0.5% open chain structure). This change of specific rotation when two anomeric forms (α and β) are dissolved in water is known as **mutarotation**.
 - (i) α and β forms of D(+) glucose are called anomers.
 - (ii) No, these are not enantiomers since these are not non-super impossible mirror images of each other. They don't rotate the plane polarised light in opposite direction but in the same direction.
 - (iii) $\alpha D(+)$ glucose (glucopyranose)

(Haworth structure) refer Q. No. 01

7. Significance of DNA finger printing:

Each person has unique finger prints which occur at the tips of fingers being used for identification. A sequence of bases on DNA is also unique for a person and information regarding this is called DNA finger printing. It is same for every cell and cann't be altered by any known treatment. It is now used:

- $(i) \quad \ to \ determine \ the \ paternity \ of \ an \ individual.$
- (ii) in forensic laboratories to identify criminals.
- (iii) to identify the deadbodies in road accident, fire accident etc. compairing DNA's of the parents or children.
- (iv) To identify racial groups to rewrite biolgical evolution.

10. Starch

It is a major source of carbohydrates to supply energy on consumption by mamals. e.g. wheat, maiz, rice etc.

Structure : It is a polymer of α -glucose and consists of two components : amylose amylopectin. Amy lose in water soluble component which constitutes 15-20% starch. Here glucose units are held by

 $C_1 - C_4$ glycosidic linkage.

Anylopectin is insoluble in water consistues about 80-85% of starch. It is a branched chain polymer of α -D glucose units (25-30) held by C₁-C₄glucosidic linkage linearly but branched by C₁-C₆ linkage (C₁-C₄ chains linked by C₁-C₆ linkage)

Cellulose

Not for human consumption but acts as source of shelter, clothing etc.

e.g. Cotton (Cellulose 90%)

Structure

Exclusively occurs in plants and the most abundant in plant kingdom. It constitutes of cell wall of plant

It is a straight chain polysaccharide of D-glucose (monomer) joined by β -glycosidic link between C₁ one and C₄ of other unit.

D-glucose unit in cellulose ranges from 300-2500. β .D(+) glucose molecules lying side by side in the form of bundles held by H-bonding.

Refer Text for Figures:

11. [α - and β - glu cos e : Difference in orientation of hydroxyl–OH group attached to C_1 atom, α -glucose is higher in energy than β -glucose.

 β -D(+) glucopyranose

- less stable due to steric hindrance, low m.p

- specific rotation 112.2
- -polymerisation gives starch

Source :

Polymerisation yields cellulose.
 Source :

e.g. Potato, beans, corn etc.

Mushroom, nuts, legumes etc.

– Specific rotation 18.7.

12. Osazone formation:

During the reaction of glucose and fructose withn excess of phenylhydrazine to form osazone only the C_1 and C_2 atoms of glucose & fructose participate in the reaction. The rest of the molecule remains intact. Hence glucose & fructose produce the same osazone.

Which can have polar $-NH_2$ amd -O-H groups. These form H–bonding with water and becomes water soluble. Halo acids have hydrophobic ends as halogen (-Cl, Br, -I) fails to form H–bonding, alkyl group (-R) is also non-polar and hydrophobic.

	(ii) Further in case of amino acid formation of Zwitter ion initiates solubility due to ion- dipole interaction.				
		$ \begin{array}{c} R \\ \downarrow \\ H_2 N - CH - COOH \end{array} \rightleftharpoons H_3 N $	R) ↓−C	H−COO ⁻	
		Zwi	tter i	on	
17.	RN	A (Ribonuclic acid)	DN	A (Deoxyribonucleic acid)	
	a.	The pentose sugar present in RNA is D-ribose. RNA contains cytosine and uracil as pyrimidine base and guanine and ademine as purine base.		The pentose sugar in DNA is D-2- deoxyribose.	
	b.			Pyrimidine-base : Cytosine and thym- ine purine base: Guanine & adenine	
		(CUGA)		(CTGA)	
	c.	It is a single chain of polynucle- otide	c.	It is a double chain of polynucleotide	
	d.	It is formed by DNA and can	d.	It can replicate itself	
		not replicate itself.	e.	Relatively long with high mol. mass	
	e.	The molecule is relatively short with low molecular mass.	f.	It controls structure, metabolism, dif- ferentiation and transfer the characters	
	f.	It regulates protein synthesis.		from one generation to other.	
	g.	It is essential genetic material of plant viruses	g.	It is an essential material of lukaryotic cells.	
18.	(a) H–b non-	These are polyhydroxy compound with ond with water and soluble. Cyclohex polar and insoluble in water.	i–OH ane a	I groups which can form inter molecular nd benzene though six membered but	
	(b) throu	Vitamin C is mainly ascorbic acid wh ugh urine and can't be stored in body.	nich i	s water soluble. It is readily excreted	
	(c) Glucose is an aldehexose and expected to give characteristic reactions of $-CHO$ group. i.e. it can react with NH ₂ OH, HCN, Tollen's reagent, Fehling solution etc. However, on acetylation with acetic anhydride the penta-acetyl glucose is formed and does not give these reactions showing the absence of $-CHO$ as present in open chain structure. This reaction supports ring structure of glucose.				
$H \longrightarrow OH OH OH OH H + 5(CH_3CO)_2O \longrightarrow H_3COCO - H OCOCH_3 + 5CH_3COOH Acetic anhydride H - OCOCH_3 + 5CH_3COOH Acetic acid$					
		D(+) glucose		Penta-acetyl derivative.	

[283]

UNI	C - XV		
1.	The preparation is a multistage process beginning with heating of phenol and formal dehyde in presence of catalyst such as HCl, $ZnCl_2$ or NH ₃ base. This a condensation Co-polymerisation.		
	Uses: (i) adhesive binding agent		
	(ii) protective purposes		
	(iii) making utensils		
	It is a thermosetting plastic as upon heating gets hardened and cann't soften again as contains cross links or heavily branched polymer.		
2.	Refer text.		
3.	Chain growth polymerisation : Addition polymer e.g. Teflon		
	Step-growth polymerisation: Step wise mechanism achieving high molecular mass e., polyster, polyamides (condensation polymer)		
4.	Homo polymer (polythene)		
	Co-polymer : polyster is co-polymer of ethylene glycol and terepththolic acid.		
5.	Ref. text		
6.	Decron (polyester - thermoplastic linear polymer used as fibres for clothing.)		
7.	Refer text		
8.	Refer text		
9.	It must be carried out as anionic polymerisation as carbanion intermediate is formed getting stablised by electron withdrawing (-CN) group.		
	$ \overset{+}{\mathrm{K}} \overline{\mathrm{N}}\mathrm{H}_{2} + \mathrm{C}\mathrm{H}_{2} = \mathrm{C}\mathrm{H} \longrightarrow \mathrm{H}_{2}\mathrm{N} - \mathrm{C}\mathrm{H}_{2} - \overset{-}{\mathrm{C}}\mathrm{H} \mathrm{K}^{+} \rightarrow \begin{pmatrix} -\mathrm{C}\mathrm{H}_{2} - \mathrm{C}\mathrm{H} - \\ \\ \\ \mathrm{C}\mathrm{N} \end{pmatrix}_{\mathrm{n}} $		
10.	Refer text		
UNI	- XVI		
1.	Refer text.		
2.	Refer text.		
3.	Refer text.		
4.	Antihistamine are drugs which prevent allergy and release of lesser amount of acid Antacid neutralises excess acid in the stomach. Use of antacid may trigger the production of more acid. Now a days antihistamine drugs like ramitidine, terfenadine, are in use.		
5.	Non-biodegradability is due to branched hydrocarbon chain as aresult bacteria cann act on them. These are one of the sources of pollution. e.g. cetylmethyl ammonius bromide.		
	Soaps are sodium / potassium salt of long chain fatty acid which can be degraded.		

6.	AB
	(a) Ofloxacin — bactericidal
	(b) furacine antiseptic
	(c) chlorine disinfectant
	(d) Veronal tranquilizer
	(e) sodium lauryl sulfate (SLS) — detergent
	(f) sodium rosinate — laundry soap
7.	Side effects of drug :
	 It may bind to more than one type of receptor.
	 Side effect if the drug interacts with histamine.
	- The degraded product of drug which is biologically active may interact with some other receptor.
	 One desease is cured giving path way to another disease.
8.	Refer text.
9.	Refer text.
10.	Difference between soaps and detergents.
11.	Refer text
12.	Refer text
13.	Bathing soap : K-salt of long chain fatty acid. These are soft and free from unused alkali.
	Washing soap . Sodium salt of long chain fatty acid.
	Usually hard also contain some residual alkali.
14.	i) It is toxic to liver.
	ii) Due to hydrolysis salicylic acid is formed affecting badly the stomach wall. Thus acts as gastric irritant producing ulcer in long run.
	* * *

		GROUP - C
		LONG ANSWER TYPE QUESTIONS
Long	Que	stions : (Seven Mark Each)
1.	Exp	lain the following :
	(a)	Crystalline solids are anisotropic.
	(b)	ZnO on heating becomes yellow.
	(c)	NaCl on heating in sodium vapour becomes yellow.
	(d)	Sodium chloride (s) behaves as a non-conductor.
		[1+2 x 3]
2.	Der	ive an expression to calculate the edgelength of a unit cell.
	leng	A metal crystallises into two cubic faces ie, fcc and bcc whose unit cell edge 3.5° A, 3.0° A respectively. Densities of fcc and bcc are in the ratio —.
		[4+3]
3.	Wri	te notes :
		(a) Stochiometric defect
		(b)Amorphous solids [4+3]
4.	(a)	Classify the solids on the basis of bonding with example.
	(b)	Three dimensional lattice
5.	(a)	State and explain Raoult's law. How is it related to Henry's law?
	(b)	What are ideal and non-ideal solutions.
6.	What colli	at are colligative properties ? Show that relative lowering of vapour pressure is a gative property.
	vola low solu	The vapour pressure of pure benzene at certain temperature is 0.850 bar. A non atile- non electrolyte solute of 0.5 g added to 39.0 gram of benzene (78 g/mol) ers the vapour pressure of the solution to 0.845 bar. Calculate the molar mass of te.
7.	(a) from elec	Show that molecular mass of a non volatile, non-electrolyte can be calculated n the measurement of elevation of boiling point of a solution containing the non- trolyte.
	(b) solv Give	The boiling point of a solution containing 50 g of a non volatile solute in 1 Kg of ent in 0.5° higher than that of pure solvent. Determine the molecular mass of solute. en that molecular mass of solvent = 78 gm/mol and K _b of the solvent = 2.53 Km ⁻¹ .
8.	Wha mas	at is molalcryoscopic constant ? How depression in freezing point related to molecular s of the solute.
	Ethy solu mol	ylene glycol is a common automobile antifreeze. Calculate the freezing point of a tion containing 12.4 g of this substance in 100 gram of water. $K_f = 1.86 \text{ K.kg}^{-1}$
9.	Wha prop mas	at is osmotic pressure ? Discuss the laws involving it. Osmotic pressure is a colligative perty - explain. Calculate the osmotic pressure of 5% solution of cane sugar (mol. $s = 342 \text{ gram} / \text{mol}$) at 17°C.

10.	Explain the following :		
	(i) Molecular mass of NaCl determined by colligative property method is found abnormal.		
	(ii) Sea water can be desalinated to get potable water.		
	(iii) It is difficult to cook on hill top.		
	 (iv) Determination of molecular mass of a solute is preferably done by osmotic pressure method. 		
11.	What do you mean by molality of a solution. How is it related to elevation of boiling point? Calculate the molality of 1 liter solution of 93% H_2SO_4 (Weight / volume). The density of solution is 1.84 g/ml.		
12.	Explain the following:		
	(i) Doctor advises to gurgle saline water		
	(ii) Sea water never quenches thirst.		
	(iii) During packaging of fish, salt is added to ice.		
	(iv) At the time of boiling eggs salt is added to water.		
13.	Write notes on :		
	(i) Galvanic cell		
	(ii) Standard hydrogen electrode. [4+3]		
14.	Explain Nernst equation. How can you calculate equilibrium constant of a cell reaction.		
	Calculate the cell potential of a Daniell cell –		
	$Zn Zn^{2+}(0.01M) Cu^{2+}0.1M Cu, given E^0_{Cell} = 1.1V$		
15.	Define and explain equivalent conductance and specific conductance. Find a relation between them.		
	0.1N solution has a specific conductance 0.0011 g ohm ⁻¹ cm ⁻¹ .		
	Find out its equivalent conductance. $[2+2+2]$		
16.	State and explain Kohlraush law of independent migration of ions. How can you determine the dissociation constant of CH ₃ COOH?		
	The conductivity of 0.001028 molar acetic acid is 4.95×10^{-5} ohm ⁻¹ cm ⁻¹ . Calculate		
	the dissociation constant if Λ^0 values of NaCl. HCl and NaAc are 126.4, 425.9 and		
	$091.0 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ respectively.		
17.	Write notes on :-		
	(i) Electrochemical series (ii) Dry cell		
18.	State and explain Faraday's laws of electrolysis. How many grams of Aluminium can be produced by electrolysis of molten alumina with a current of 3 ampres for 10 mts?		
19.	Discuss the terms :		
	(i) Rate of reaction and specific reaction rate		
	(ii) Order of reaction and molecularity. $[3+4]$		
20.	(i) Discuss the factors affecting rate of reaction.		
	(ii) What is a pseudo unimolecular reaction. $[4+3]$		

21.	Discuss the kinetics of zero order reaction with one example. Show that the half life period of the reaction is directly propertional to initial concentration.				
	Determine the order with respect to the reaction $A + B \longrightarrow P$ from the following data.				
	Expt	. [A]	[B]	Initial rate	
	1	0.1	1.0	$2.1 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$	
	2	0.2	1.0	$8.4 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$	
	3.	0.3	2.0	$8.4 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$	
22.	Deriv life p	ve an expres eriod is inde	ssion for the rate of pendent of initial	constant of first order reaction. Show that its half concentration.	
	take	A first orde for 80% con	r reaction takes 6 npletion.	9 g minutes for 50% completion. How long will it	
23.	How	does rate c	onstant change w	vith temperature ?	
	Wha	t is activatio	on energy? How	can you find it out ?	
	K. C + 2]	The rate of alculate the	a reaction doubl activation energy	es for change in temperature from 298 K to 308 r for the reaction. $[2+1+2]$	
24.	(a)	Discuss col	lision theory of cl	nemical reaction. [5]	
	(b)	How does	catalyst affect act	ivation energy? [2]	
25.	What is adsorption? How does physical adsorption differ from chemisorption? Discuss the factors affecting adsorption of gases on solids. $[1+3+3]$				
26.	Nam	e the catalys	st for the followin	g reactions :	
	(i)	$CO_{2} + 2H_{2}$	$\longrightarrow CH_3OH$	(g)	
	(ii)	$CO + 3H_2$	$\longrightarrow CH_4(g) +$	$H_2O(g)$	
	(iii)	$\rm CO + H_2(g$	$) \longrightarrow \text{HCHO}$		
	(iv)	$C_{12}H_{22}O_{11}(4)$	$aq) + H_2O(l) -$	$\longrightarrow C_6 H_{12}O_6 + C_6 H_{12}O_6$	
				glucose fructose	
	(v) $C_6H_{12}O_6(aq) \longrightarrow 2 C_2H_5OH + 2CO_2$				
	(vi) $2(C_6H_{10}O_5)$ aq + 4 $H_2O \longrightarrow n C_{12} H_{22} O_{11}$ (aq) Starch maltose				
	(vii)	Maltose —	\rightarrow glucose		
	(viii)	NH ₂ CON	$H_2(aq) + H_2O -$	$\longrightarrow 2NH_3(g) + CO_2(g)$	
	(ix)	Protein —	\rightarrow peptide		
	(x)	Protein —	\rightarrow amino acid		
	(xi) Milk \longrightarrow Curd				

	(xii) $H_2 + \frac{1}{2} O_2 \longrightarrow H_2O$
	(xiii) $2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_3$ (Homogeneous)
	$(\dot{xiv}) 4 \text{ NH}_3 + 5\text{O}_{2(g)} \longrightarrow 4\text{NO}_{(g)} + 6 \text{ H}_2\text{O}(g)_{(\text{heterogeneous})} $ [7]
27.	What are colloids ? Classify them. $[2+5]$
28.	Explain the following :
	(a) Brownian movement provides stability to colloidal solution.
	(b) Tyndal effect is the optical property of colloids.
	(c) Arsenic sulfide sol undergoes electrophoresis
29.	What happens when –
	(i) Oil is added to water in presence of soap?
	(ii) An electrolyte, NaCl is added to Ferric oxide sol?
	(iii) FeCl ₃ is added to excess of hot water or NaOH is added to FeCl ₃ solution.
	(iv) AgNO ₃ solution is added to KI solution and vice vesra?
30.	(a) How does nitrogen differ from other elements of the group?
	(b) Discuss the properties of hydrides of group-15.
31.	(a) How can you prepare dinitrogen in the laboratory ? A solid mass is formed on action of air with magnesium. What happens when the mass is hydrolysed ?
	[3+4]
20	(b) Discuss the favourable condition for better yield of NH_3 by Haber's process.
32.	Lab - methods of preparing NH_3 , and SO_2 . Explain the reducing action of $NH_3 & SO_2 = [3+2+2]$
33.	Discuss the principle of synthesis of
	(i) Nitric acid by Ostwald process
	(ii) Sulfuric acid by contact processes. $[3+4]$
34.	Discuss Siemen's ozoniser to synthesis pure ozone. How does ozone react with
	(i) KI (aq) (ii) Potassium ferrocyamide
35.	Explain the following :
	(i) Bleaching by SO_2 is temporary
	(ii) Oxygen differs from other elements of the group 16.
	(iii) SO_3 is an oxidant but SO_2 behaves both as oxidant and reductant.
	(iv) O–O Bond lengths in ozone are identical.
36.	(a) Discuss the properties of hydrides of gr. 17.
	(b) Fluorine is the most reactive nonmetal- explain.
37.	Write notes on –
	(a) Inner halogen compounds
	(b)Fluorides of Xenon.

38.	What are transition elements? Describe any four important properties of transition elements.
39.	(a) State and explain Werner's cordination theory. [4
	(b) Discuss any three structural isomers of co-ordination compounds. [3
40.	Discuss valence bond theory. What are inner and outer orbital complexes. Show the magnetic behaviour of $[Fe(CN)_6]^{3-}$, $[Ni(CO)_4]$ [3 + 2 + 2]
41.	Discuss the crystal field theory. How does it differ from VBT. Explain the fact that $[CoF_6]^{3-}$ is paramagnetic where as $[Co(NH_3)_6]^{3+}$ is diamagnetic although both are octhedral. [5+2]
42.	How can you prepare ethyl bromide from ethyl alcohol and ethene ? What happens when it reacts with (i) Ag CN (ii) KNO_2 (iii) KOH (alc.) ?
43.	Write notes on :
	(a) Wurtz reaction, (b) Sandmeyer's reaction.
44.	How can you prepare chlorobenzene ? Cl is a deactivating group but undergoes O-P- substitution – explain. Prepare phenol and picrylchloride from it. $[2+2+3]$
45.	How can you prepare ethylalcohol from
	(i) ethanamine (ii) suitable ester (iii) methanol. Discuss its reaction with
	(i) conc. H_2SO_4 (ii) Cl_2 red P. [7]
46.	Name the alcohols with general formula $C_4H_{10}O$. Distinguish them from one another in the laboratory. Discuss their reactions with heated copper. [2+2+3]
47.	Notes on :
	(a) Acidic nature of phenol -
	(b) Reimer Tieman reaction
	(c) Williamson's synthesis.
48.	How can you prepare phenol from benzene, aniline and cumene. Mention method to
	prepare salicylic acid from phenol. What is its oxidation product? $[4\frac{1}{2}+1\frac{1}{2}+1]$
49.	How can you prepare ether from alcohol? State its reaction with (i) HI (ii) PCl_5
	(iii) CH ₃ COCl.
50.	How can you prepare acetaldehyde from
	(i) ethanol (ii) acetylchloride (iii) acetylene
	What happens when it reacts with
7 1	(i) dil NaOH (ii) hydroxyl amine $[3+4]$
51.	(a) Give the reagent(s) to preparate
	i) $CH_3CHO from CH_3CHO CH_3CHO From CH_3CHO CH_3CHO CH_3CHO From CH_3CHO CH$
	ii) Pentanol from ethylpentanoate (ester)
	iv) p-bromophenol from phenol
	v) CH,COOH from CH,–CH,OH
	vi) 2, 4, $6 - \text{tri bromophenol from phenol}$ [3]

	(b) How can you prepare acetone from		
	(i) acetic acid (ii) acetylene (iii) acetyl chloride? (iv) $CH_3C \equiv N$ [4		
52.	Write notes on :		
	(a) Aldol condensation		
	(b)Cannizzaro's reaction		
	(c) Iodoform (Haloform) reaction		
53.	How can you prepare benzoic acid by carboxylation and from toluene and benzamide. What happens when it reacts with (i) $NaHCO_3$ (ii) PCl_5		
54.	How can you prepare acetic acid from (i) alcohol. (ii) alkyl halide (iii) ester. Mention a test to distinguish it from formic acid. Convert acetic acid to formic acid.		
55.	Explain i) Effect of substituents on acidic nature of carboxylic acid.		
	ii) Hoffinan's bromamide reaction		
	iii) HVZ - reaction		
56.	An organic compound with molecular mass 86 doesnot reduce Tollen's reagent but forms an addition compound with NaHSO ₃ and responds to iodoform test. On vigorous oxidation it gives ethanoic acid and propanoic acid. Write the structure of the compound with equation is each state. Calculate the % of C in it.		
57.	An organic compound with molecular formula C_7H_7ON , on treatment with alkaline bromine gives a compound which undergoes diazotisation with sodium nitrite (s) and dil HCl but on reduction of (A) with LiAH ₄ gives another compound (C) which fails to produce diazominum salt but with same reagent gives another compound (D).		
	The compound (A) on heating with P_2O_5 gives compound (E) which on boiling with dil HCl gives compound (F), the ammonium salt (G) of which on heating gives back (A). Identify the compounds A to G. [7]		
58.	How can you prepare amines by (i) ammonolysis (ii) Reduction. Discuss its reaction with benzoyl chloride. Why are aliphatic amines more reactive than aromatic amines ?		
	[4+1+2]		
59.	Write notes on		
	(i) Gabriel phthalimide synthesis.		
	(ii) Carbylamine reaction		
	(iii) Basic nature of aliphatic amines. $[2+2+3]$		
60.	Name the amines with formula C_3H_9N . Distinguish one from another. Show that amines are more basic than amides. [2+3+2]		
61.	How is benzene diazonium chloride prepared ? Write down two reaction favouring displacement of N_2 and one reaction retaining diazo group. [2+4+1]		
62.	Write notes on :-		
	(i) Schmidt reaction		
	(ii) Mendius reaction		
	(iii) Hofmann's reaction		

	(iv) Protection $-NH_2$ group in aniline
	(v) Bromination and sulfonation of aniline
63.	Explain the action of nitrous acid (HONO) on primary, secondary and tertiary amines. How aniline differs from methyl amine in its reaction with nitrous acid.
64.	What are polymers? How are they classified on the basis of (i) structure (ii) synthesis (ii) molecula forces involved, (iv) microorganism degradable polymer, Give example in each case.
65.	Write notes on - (i) Vulcanisation of rubber
	(ii) Free radical addition polymerisation
66.	Write notes on
	(i) Antibiotics
	(ii) Antiseptic
	(iii) Analgesic
67.	What are soaps and detergents ? Discuss their cleansing action.
68.	What are proteins ? How are they classified ? Discuss 10, 20 and 30 structures.
	[1+1.5+4.5]
69.	What are vitamins ? Classify vitamins along with their roles of various vitamins in our body. $[2+5]$
70.	Classify carbohydrates. Discuss the importance of starch, cellulose and glycogen.
	[1+6]
	$\diamond \diamond \diamond$

ANSWERS GROUP-C (LONGANSWER TYPE)

1. (a) Due to definite three dimensional geometric arrangement the physical property if studied through a crystal its value resolved in to three components. e.g. if velocity of light (v) studied in a crystal, $V^2 = v_x^2 + v_y^2 + v_z^2$, $V_x =$ velocity along x-direction

(b)
$$\operatorname{ZnO} \xrightarrow{\Delta} \operatorname{Zn}^{2+} + \frac{1}{2}O_2 + 2e^{-}$$

This is a metal excess defect. The excess Zn^{2+} ions move to interstitial sites & the $e^{-}(s)$ to neighbouring interstices.

(c)
$$Na + Cl^{-} \longrightarrow NaCl + e^{-}$$

 $\rho = \frac{Z.M}{N a^3}$

Electron occupies the anion (CF) vacancy site. This is called F– centre. The colour results by excitation of these $e^{-}(s)$ on exposure of visible light.

(d) Due to inter ionic force of attraction ions fail to move on application of electric field.

3

$$\rho_{fcc} = \frac{4 \times M}{N_A \times (3.5 A^0)^3}$$
$$\rho_{bcc} = \frac{2 \times M}{N_A \times (3.0 \times {}^0 A)^3}$$
$$\frac{\rho_{fcc}}{\rho_{bcc}} = \frac{4}{2} \times \left(\frac{3}{3.5}\right)^3 d$$

(ii) Interstitial defect

(iii) Schoottky defect

(b) Refer Text.

4. Refer Text (Bravais lattices)

5. Raoult's law as a special case of Henry's law.

Raoult's law : $P_A = X_A P_A^0$

Vapour pressure of the volatile component in directly proportional to the mole fraction that component in solution.

Henry's law $\implies P_A = K_H \cdot X_A$

Gas is the solute and liquid is the solvent. Here the partial pressure of the volatile ecomponent (gas) is proportional to the mole fraction of that component (gas) in the solution.

The two laws are identcal, except the proportionality constants.

 P_A^{0} in case of Raoult's law.

 $K_{\rm H}$ is the case of Henry's law.

6.
$$\frac{P_{A}^{0}-P_{A}}{P_{A}^{0}} = \frac{n_{B}}{n_{A} + n_{B}} = \left(\frac{W_{B}}{M_{B}} \times \frac{M_{A}}{W_{A}}\right) \qquad A = \text{solvent, } B = \text{solute}$$

$$\dots For dlute solution P_{s} = v.p. of solution.$$

$$\frac{P_{A}^{0}}{P_{A}^{0}-P_{s}} = 1 + \frac{n_{A}}{n_{B}}$$

$$\frac{P_{A}^{0}}{P_{A}^{0}-P_{s}} = 1 = \frac{n_{A}}{n_{B}}$$

$$\Rightarrow \frac{P_{A}^{0}-P_{A}^{0}+P_{S}}{P_{s}} = \frac{n_{A}}{n_{B}}$$

$$\Rightarrow \frac{P_{A}^{0}-P_{A}^{0}+P_{S}}{P_{s}} = \frac{n_{B}}{n_{A}} = \frac{W_{B}}{M_{B}} \times \frac{M_{A}}{W_{A}} \text{ o}$$
Problems:
All types of solution, dilute or concentrated.
$$\frac{0.850-0.845}{0.845} = \frac{0.5}{M_{B}} \times \frac{78}{39} \text{ ro}$$

$$M_{n} \text{ can be calculated.}$$
7.
$$\Delta T_{b} = K_{b} \text{ m b}$$

$$= k_{a} \times \frac{W_{B}}{M_{B}} \times \frac{1000}{W_{A}}$$
8.
$$K_{f} = \frac{MR(T_{f}^{0})^{2}}{1000 \times A_{as}H}$$

$$K_{c} = \text{molal cryoscopic constant.}$$

$$M = \text{molar ranso of solvent in gram/mole.}$$

$$T_{f}^{0} = \text{royscopic constant}$$

$$A_{aga}H = \text{molar latent heat of fusion of solvent.}$$
*
$$\Delta T_{f} = k_{r} \text{ m}$$
9. Boyle - van't Hoff law $\pi \propto C$, at constant temperature. $C = \text{mol/L} (\text{molar concentration})$

$$van't Hoff equation:
$$\pi V = nRT$$

$$\Rightarrow \qquad \pi = \frac{W_{B}}{M_{B}} \times \frac{RT}{V}$$

$$M_{B} = \frac{W_{B}RT}{\pi V} \quad R = 0.0821 \text{ L. atm. mol}^{-1} \text{ K}^{-1}.$$$$

10.	(i)	NaCl is an electrolyte for which $i = 2$ i.e, with higher colligative properties and hence molecular mass is reduced.		
	(ii)	See text.		
	(111)	Due to lower surrounding pressure vapour pressure of water increases reducing the boiling point of water. As a result food material becomes difficult to boil.		
	(iv)	The osmotic pressure of the solution can be recorded suitable while		
		ΔT_{f} , ΔT_{b} , $\Delta p/p^{0}$ measurements are not better noticiable.		
11.	Mola	ality (m) = $\frac{\text{no.of moles of solute}}{\text{mass of solvent in kg}}$ wt of solute = 93 gram wt of solution = 100 × 1.84 = 184 gram		
	It is i	independent of temperature. $wt of solvent = 184 - 93 = 91 gram$		
		Molality = $\frac{W}{M} \times \frac{1000}{W'} = \frac{93}{98} \times \frac{1000}{91}$		
12.	(i)	Saline water has higher osmotic pressure than the the fluid of infected cell of the mouth.		
	(ii)	Sea water has higher osmotic pressure as a result water from cell moves to high osmotic pressure.		
		Thus, the cell gets dehydrated to feel more thirsty.		
	(iii)	Lower of freezing point.		
	(iv)	Elevation of boiling point to reduce time. $[2 \times 3 + 1]$		
13.	(i)	It is a device where the decrease in free energy $(-\Delta G)$ is converted to electrical		
		work (energy) i.e., $-\Delta G = nFE$		
		Cell notation - Cell equation- Cell potential.		
	(ii)	$H^+ + e^- \rightarrow \frac{1}{2}H_2, \frac{E_{H^+}}{(1M)} = \frac{1}{2}H_2(1 \text{ atm}), Pt = 0.0 V$		
14.	\rightarrow a	$A + bB \xrightarrow{n_e} cC + dD$		
	$E_{cell} = E_{Cell}^{0} - \frac{RT}{nF} \ln Q [Q \text{ is the reaction quotient})$			
		$= E_{cell} = E_{Cell}^0 - \frac{RT}{nF} \ln Q, \qquad -\Delta G^0 = nFE^0 = RT \ln K$		
	\rightarrow	$E_{Cell}^{0} = \frac{2.303}{nF} \log K_{C}$		
15.	$\Lambda =$	$K.V = K \frac{1000}{C}$		
	(V is C - tl	the volume of solution containing 1 gram eqvt. of the electrolyte. ne nomality of solution)		

Problem :
$$\Lambda = 0.0019 \times \frac{1000}{0.1}$$

= 19 ohm⁻¹ cm² gran eqvt⁻¹.
16. Statement, Explanation --
Expl. $\Lambda_{Kc1}^0 - \Lambda_{Nac1}^0 = \Lambda_{NaBe}^0 = \Lambda_{KN0,0}^0 - \Lambda_{NaN0,0}^0$
= $\lambda_{kc}^0 - \lambda_{Nac}^0 = 23.41 \text{ ohm}^{-1}\text{cm}^2 \text{ mol}^{-1}$
It indicates C1, B⁻¹ or nitrate have definite contribution towards the equivalent
conductance of respective electrolyte irrespective of their association with differ anions
such as C1, B⁻¹ or nNO₃⁻.
Similarly (keeping cation fixed) $\Lambda_{KBI}^0 - \Lambda_{KC1}^0 = \Lambda_{LG1}^0 = \Lambda_{NaBe}^0 - \Lambda_{NaC1}^0$
= $\lambda_{ne}^0 - \lambda_{CT}^0 = 2.06 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$.
It show that irrespective of association with different anions (B⁻¹ or C1), the cation K',
L⁺ or Na⁺ has fixed conductance at infinite dilution and at a given temperature.
Problem : $\Lambda_{C11,C001}^0 = 425^0 \text{ g} + 91.0 - 126.4 = 390.5 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
 $\alpha = \frac{\Lambda_m}{\Lambda_m^0} \text{ and } \Lambda_m = k \times \frac{1000}{C}$
 $= 4.95 \times 10^{-5} \times \frac{1000}{0.001028}$
 $= 4.815 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
 $\alpha = \frac{48.15}{390.15} = 0.1233$
K_a = $\frac{C\alpha^2}{1-\alpha} = \frac{0.001028 \times (0.1233)^2}{1-0.1233}$
17. (i) Series of arrangement of electrodes arranged in order of their standard reduction
potential on hydrogen scale. Applications of electro chemical series.
(ii) Dry cell (Leclanche cell)
Graphite carbon cathode in zinc container (anode) with a paste of NH₄Cl, Zn
Cl₁. The graphit rod is surrounded by MnO₂ & C.
Anode - Zn → Zn²⁺ + 2e
cathode. MnO₂ + NH₄⁺ + 2e → MnO(OH) + NH₃(g)
Pressure due to NH₄(g) is reduced by formation of [Zn(NH₃)₃]²⁺.
Cell potential = 1.5 V
18. First law :
W = ZQ, Z = electrochemical equivalent of the substance, gram / coulomb.
2nd law - $\frac{W_1}{W_2} = \frac{E_1}{E_2} = \frac{Z_1}{Z_2}$

$$\begin{split} 8: 4 \times 10^{-3} &= k \ (0.2)^x \ (1.0)^y \\ 8: 4 \times 10^{-3} &= k \ (0.2)^x \ (2.0)^y \end{split}$$
 Dividing one by another.

$$1 = k(1)^{x} \cdot \left(\frac{1}{2}\right)^{y} \quad \text{i.e, } y = 0$$
$$2.1 \times 10^{-3} = k(0.1)^{x} \times (1.0)^{y}$$
$$8.4 \times 10^{-3} = k(0.2)^{x} \times (1.0)^{y}$$

Dividing one by another.

$$\frac{1}{4} = \left(\frac{1}{2}\right)^{x}$$
$$\Rightarrow \left(\frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{x} \text{ i.e, } x = 2$$

Rate = $k[A]^2[B]^0$

i..e, The reaction is second order with respect to A & zero order with respect to B. The overal order of reaction = 2 (second order)

Example (zero order reaction)

$$H_{2(g)} + Cl_{2(g)} \xrightarrow{hv} 2HCl_{(g)}, 2N_2O_{(g)} \xrightarrow{Pt} 2N_{2(g)} + O_{2(g)}$$
22. $\log \frac{[R]_0}{[R]}$

$$k = \frac{1}{t} \ln \frac{[R]_0}{R}$$

$$k = \frac{1}{t} \ln \frac{[R]_0}{R}$$
Problem: $t_{\frac{1}{2}} = \frac{0.693}{k}$
So $k = \frac{0.693}{69.3} = \frac{2.303}{t} \log \frac{100}{20}$
23. $\ln k$

$$\int Slope = -\frac{Ea}{R} \log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$
Problem: $\log 2 = \frac{Ea}{2.303 \times 8.134} \times \frac{308 - 298}{308 \times 298}$
24. (a) $Z_{AB} = collision frequency,$
Considering the probability or steric factor - rate = P. $Z_{AB} e^{-EaRT}$

(vii)	Maltase
('")	111unube

(ix) Pepsin (stomach)

(xi) Lacto bacilli

- (viii) urease
- (x) Trypsin
- (xii) Pt
- (xiii) NO (Lead chamber process) (xiv) Pt(s)
- 27. Colloidal solution is a heterogeneous solution containing particles (colloids) between 1. nm and 100 nm in dispersed phase. On the basic of affinity of dispersed phase for dispersion medium colloidal solution is of two types
 - (i) Lyophilic colloids
 - (ii) Lyophobic colloids.

On the basic of Molecular size colloids are of three types

- (i) Multimolecular colloids
- (ii) Macromolecular colloids
- (iii) Micelles or Associated colloids.
- 28. (a) Continuous Zig-zag motion of colloids is called Brownian movement when such motion stops phase, medium separate & the solution is not a colloidal solution i.e., coagulation occurs. Thus so long as such motion continues a stable colloidal solution is seen.
 - (b) This property is viewed when converged light is allowed to pass through colloidal solution. The path of the beam is illuminated by bluish light as colloidial particles scatter the hight in all direction (in space). This scattering of light illuminates the path of beam in colloidal dispersion.

Reason :

- (i) the diameter of the dispersed particles is not much smaller the wavelength of light used.
- (ii) The refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude.
- (c) As_2S_3 is -ve sol. when subjected to electric potential the -vely charged particle of the dispersed phase migrates towards anode.
- 29. (i) Emulsification. Soap is an emulsifying agent.
 - (ii) Coagulation
 - (iii) A positively charged sol of hydrated ferric oxide is formed due to preferntial adsorption of Fe^{3+} .

		$\operatorname{Fe_2O_3.xH_2O}/\operatorname{Fe^{3+}}$, $\operatorname{Fe_2O_3.xH_2O} \operatorname{OH^-}$					
		Positively charged Negatively charged (adsorption of OH ⁻ ions)					
	(iv)	$\operatorname{AgI} I^- K^+$, $\operatorname{AgI} \operatorname{Ag}^+ I^-$					
		-ve sol. +ve sol.					
30.	(a)) Small size and high electronegativity value (3.0)					
		ii) Non availability of d-orbitals. $_7$ N $1s^22s^2sp^3$					

- (iii) N is diatomic (N₂), phosphorous is polyatomic (P₄)
- (iv) N-N is weaker due to repulsion between non-bonding e⁻(s) hence is not catenating, 'P' unable to form π -bonding but can form strager p-p σ -bond, hence catenating as in red 'P'

(v) 'N' has maximum covalency- four, but other can expand their valency state upto six due to presence of d-orbital.[PCl₆]⁻ 'P' can form $d_{\pi} - p_{\pi}$ bond with transition metals, $R_3 P = O(d_{\pi} - p_{\pi} bond)$. Hydride of Nitrogen family: (b) NH₂, PH₂, AsH₂, BiH₂, SbH₃ (stibine) Basic character decreases as the e- density decreases with increase of molecular \rightarrow volume. Bond angle decreases due to greater lane-bond pair repulsion. \rightarrow Boiling point $BiH_3 > SbH_3 > NH_3 > PH_3 > AsH_3 NH_3$ has higher boiling point than PH, and As Hg due to formation of ntemolecular H-bonding. BiH, SbH, have higher b.p. due to stronger vander waals force arising out of bigger molecular size. Reducing character $NH_3 < PH_3 < As H_3 < BiH_3 < SbH_3$ is attributed to their E - H bond dissociation energy. (E = element of group-15) 31(a). $NH_4Cl(aq) + NaNO_2(aq) \longrightarrow N_2 \uparrow + 2H_2O + NaCl(aq)$ Impurities : NO and HNO₃. The computies can be removed by passing through aq. sulfuric acid containing pot. dichromate (b) Favourable conditions for better yield of NH, Condition for better yield of NH₂ by Haber's process. (i) Optimum temperature of 500° C (ii) High pressure of 200–900 atom. (iii) Finely divided iron as catalyst with Mo as prmotor (iv) High concentration of pure and dry N_2 and H_2 . $\rightarrow 2NH_4Cl + CaO \xrightarrow{\Delta} 2NH_3 \uparrow + CaCl_2 + H_2O$ 32. NH₃ is to be dried by quick lime tower. Collection: Down ward displacement of air. \rightarrow Cu + 2H₂SO₄ $\xrightarrow{\Delta}$ CuSO₄ + SO₂ + 2H₂O $4H^+ + SO_4^2 + 2\overline{e} \longrightarrow SO_2 + 2H_2O$ $Cu \longrightarrow Cu^{2+} + 2e^{-}$ Dried on passing through conc. H₂SO₄. Collection: upward displacement of air. \rightarrow Reducing action of SO₂ SO_2 on passing through acidfied $K_2Cr_2O_7$ solution turns green, $Cr_2(SO_4)_3$ $Cr_2\overline{O}_7 + 14H + 6e^- \longrightarrow Cr^{3+} + 7H_2O$ $SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^-$

→ Reducing action of NH₃. 3CuO + 2NH₃(g)
$$\xrightarrow{h}$$
 3Cu + N₂ + 3H₂O
33. (i) 4NH₃ + 5O₂ \xrightarrow{H} 4NO + 6H₂O
2NO + O₂ \longrightarrow 2NO₂
4NO₂ + 2H₂O + O₂ \longrightarrow 4HNO₃
(ii) 2SO₂ + O₂ $\xrightarrow{VO_{2}}$ 2SO₃ + 45.2K cal
SO₃ + H₂SO₄ \longrightarrow H₃S₂O₇
(Oleum or furning sulfuric acid)
Conditions for better yield: (It obeys Le-chatelier's principle)
(i) Excess of dry oxygen and air
(ii) high pressure (~2 atm. pressure)
(iii) Optimum temperature of 450 – 500°C.
As the process is exothermic high temperature to be avoided.
34. Principle. 3O₂ $\xrightarrow{\text{steff}}$ 2O₃
The product is ozonised oxygen (O₃+O₂).
O₃ + O₂ $\xrightarrow{\text{steff}}$ condensed to deep blue liquid $\xrightarrow{\text{foreinent}}$ $\xrightarrow{90 \text{ K}}$ (oxygen)
O₃ + O₂ $\xrightarrow{\text{steff}}$ condensed to deep blue liquid $\xrightarrow{\text{foreinent}}$ $\xrightarrow{90 \text{ K}}$ (oxygen)
O₃ + O₂ $\xrightarrow{\text{steff}}$ condensed to deep blue liquid $\xrightarrow{\text{foreinent}}$
(i) O₃ + H₂O + 2e⁻ \longrightarrow 2OH⁻ + O₂
2I⁻ \longrightarrow I₂ + 2O⁻ $\xrightarrow{0}$
(ii) $\left[\text{Fe}(\text{CN})_{k}\right]^{4^{-}} \longrightarrow \left[\text{Fe}(\text{CN})_{k}\right]^{3^{+}} + e$
35. (i) SO₂ + H₂O \longrightarrow SO₃ + 2(H)
Coloured matter $\xrightarrow{(\text{H})}$ coloueless $\xrightarrow{\text{steff}}$ regains colour.
Blaching by reduction
(i) (a) Small size and high electronegativity (3.5)
(b) Absence of d-orbital, hence maximum valence state is three (even four) other
can expand upto six.
(c) O - exhibit H-bonding e.g. H₂O(1) but H₂S(g)
(d) Physical state-O₂ is a gas but others are solids
(e) Multiplicity of bond. Due to smaller size oxygen can form π -bond.

	(iii)	so reduces, hence both can						
	has maximum valence state							
	(iv)	Ozo	hree atoms are at the apices					
	n with O O bond angle							
	It is resonance hybrid of							
			$\overset{+}{\overset{+}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{$		$\leftrightarrow 0^{\mu^0}$			
36.	(a)	Hyd	lrides are HF, HCl, HBr, HI					
		Aci	lic nature / reducing nature	HI > HBr	>HCl>HF			
	Ther	mal st	tability Bond dissoctation enthalpy.	HI < HBr < HCl < HF				
		Phy	sical state.	HF is a liquid due to inter molecular H-bonding, others are gases.				
	(b)	(i)	Small size, high electronegaivity va from-1 to +7)	llue (4.0), ha	ving O.S. –1 (others ranges			
	(ii) Low bond dissociation enthalpy due to electronic repulsion between le pair of $e^{-}(s)$ (non-bonding pairs,							
		(iii)	High value of reduction potential, I	$E^{O}_{F_2 F^-} = +2.8$	87 V, powerful oxidant.			
37.	(a)	The possible compounds are XY, XY_3 , XY_5 and XY_7 prepared by directly combination of halogens (X & Y) under specific conditions.						
		e.g.	$\operatorname{Cl}_2 + \operatorname{F}_2 \xrightarrow{437\mathrm{K}} 2\operatorname{ClF}$					
			$\operatorname{Br}_2 + 5\operatorname{F}_2 \longrightarrow 2\operatorname{BrF}_5$					
	Comp Cl F ₃ Br F ₅		nds hybridisation	Туре	Shape			
			$sp^{3}d^{2}$	$AB_{3}L_{2}$	T-shape			
			$sp^3 d^2$	$AB_{5}L$	Square pyramide			
	IF ₇		$sp^3 d^3$	AB_7	Pentagonal bipyramidal			
	$\rightarrow A$	→ As the molecules are polar, these compounds are more reactive than non-polar respective halogens.						
	(b)	The	se compounds are possible due to					
		(i)	low $\Delta_i H$ value of Xe					
	(ii) very high electronegativity of F.							
	Under suitable conditions Xe and F_2 react forming XeF ₂ , XeF ₄ and XeF ₆ with variation in O.S. +2, +4 and +6.							
	$O.S.=+2, \qquad \uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$							

(i)
$$\bigcirc$$
 + Cl₂ $\xrightarrow{\text{Anh. FeCl}_3}$ \bigcirc + HCl

$$Cl - Cl + FeCl_3 \longrightarrow [FeCl_4]^- + Cl^+$$

Benzene undergoes S_E.

44.

Electron pair on Cl is in conjugation and undergoes resonating effect dominating over -I effect (deactivating effect).

o/p - position susceptible to electrophilic attack.

(ii) Raschig process : $2 C_6 H_6 + 2HCl + O_2 \xrightarrow{CuCl_2}{\Delta} 2C_6 H_5 Cl + 2H_2 O$

$$\rightarrow i) \quad C_6H_5Cl + NaOH \xrightarrow{300^{0}C} C_6H_5ONa \xrightarrow{dil HCl} C_6H_5OH$$

2, 4, 6 - trinitrochlorobenzene

45.
$$\rightarrow C_2H_5NH_2 + HONO \xrightarrow{NaNO_2(s)} C_2H_5OH + N_2 + H_2O$$

 $\rightarrow CH_3COOC_2H_5 \xrightarrow{H^+} CH_3COOH + C_2H_5OH$
 $\rightarrow CH_3OH \xrightarrow{SOCl_2} CH_3Cl \xrightarrow{KCN} CH_3CN$
 $\xrightarrow{\text{LiAlH}_4} CH_3 - CH_2NH_2 \xrightarrow{HNO_2} CH_3Cl \xrightarrow{KCN} CH_3 - CH_2OH$
 $\rightarrow CH_3 - CH_2OH \xrightarrow{H^+} CH_5 \overset{\oplus}{CH}_2 \xrightarrow{-H^+} CH_2 = CH_2$
 $\rightarrow CH_5CH_2OH \xrightarrow{Cl_2/redP} CH_3 - CH_2Cl$
 $3Cl_2 + 2P \longrightarrow 2PCl_3$
 $3C_2H_5OH + PCl_3 \longrightarrow 3C_2H_5Cl + H_3PO_3$

46.
$$C_{4}H_{m}O$$

46. $C_{4}H_{m}O$
47. $CH_{3}OC-CH_{3}OC$

[309]

$$\begin{aligned} & \text{HCOOH} + 2[\text{Ag}(\text{NH}_{3})_{2}]\text{OH} \longrightarrow \text{CO}_{2} + 2\text{H}_{2}\text{O} + 2\text{Ag}+4\text{ NH}_{3} \\ & \text{CH}_{1}\text{COOH} \xrightarrow{\text{LIAN}_{3}} \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2} \xrightarrow{\text{Me}\vec{D}_{4}+\text{H}^{2}} \text{HCOOH} \\ & \xrightarrow{\text{Conc}(1,\text{SO}_{4})} \text{CH}_{2}\text{CO}\text{CH}_{2}\text{-CH}_{2} \xrightarrow{\text{Me}\vec{D}_{4}+\text{H}^{2}} \text{HCOOH} \\ \end{aligned}$$
55. (i) $\text{RCOOH} \longrightarrow \text{H}_{3}\vec{O} + \left[\mathbb{R} - \bigcap_{0}^{O} \bigoplus_{0}^{O} \bigoplus_{0}^{O} \mathbb{R} - \bigcap_{0}^{O} \bigoplus_{0}^{O} \right] = \mathbb{R} - \bigcap_{0}^{O} \bigoplus_{0}^{O} \\ & \text{(a)} \quad -1 \text{ effect increases acidic nature} \\ \text{(b)} \quad +1 \text{ effect decreases acidic nature} \\ & \text{CH}_{3}\text{COOH} \text{ is less acidic than HCOOH} \\ \text{(c)} \quad \text{Resonance effect : Greater is the stability of conjugate base greater is the acidic nature.} \\ & \text{c.g. Benzoic acid is stronger than acctic acid.} \\ & \text{(ii)} \quad \text{RCONH}_{2} + 4 \text{ KOH} + \text{Br}_{2} \longrightarrow \text{RNH}_{2} + \text{K}_{2}\text{CO}_{3} + 2\text{KBr} + 2\text{H}_{2}\text{O} \\ & \text{Significance}: \qquad (a) \quad \text{Preparation of 1}^{0} - \text{amine} \\ & \text{(b)} \quad \text{Descending C. atom is chian.} \\ & \text{(ii)} \quad \text{Substitution ofhalogen at } \alpha - \text{C} \text{ atom of the acid.} \\ & \text{c.g. CH}_{3}\text{COOH} + \text{Cl}_{2} - \frac{\text{mt}^{\text{TP}}}{\text{cl}} \rightarrow \text{ClCH}_{2}\text{COOH} + \text{HCI} \\ & \text{56.} \quad \rightarrow \quad \text{CH}_{3} - \text{CO} - (\text{CH}_{2})_{2} - \text{CH}_{3} + \text{NaHSO}_{3} \longrightarrow \text{CH}_{3} - \text{C} - (\text{CH}_{2})_{2} \text{CH}_{3} \\ & \text{sO}_{3}\text{Na} \\ & \text{CH}_{3}\text{CO}(\text{CH}_{2})_{2}\text{CH}_{3} + 3\text{I}_{2} \longrightarrow \text{Cl}_{3}\text{CO}(\text{CH}_{2})_{2}\text{CH}_{3} + 3\text{HI} \\ & \text{Cl}_{3}\text{CO}(\text{CH}_{2})_{2}\text{CH}_{3} + \text{KOH} \longrightarrow \text{CH}_{3} + \text{CH}_{3} - \text{CH}_{2}\text{COOK} \xrightarrow{\text{dHRCI}} \\ & \text{CH}_{3}\text{CO} & \left\{ \text{CH}_{2} - \text{CH}_{2}\text{CH}_{3} - \frac{\text{K}_{1}\text{cO}_{0}}{\text{H}_{3}\text{cO}_{1}\text{A}} \rightarrow \text{CH}_{3}\text{CO}\text{O} \text{H} + \text{CH}_{3}\text{CD}_{2}\text{COOH} \\ & \text{CH}_{3}\text{CO} & \left\{ \text{CH}_{2} - \text{CH}_{2}\text{CH}_{3} - \frac{\text{K}_{1}\text{cO}_{0}}{\text{H}_{3}\text{cO}_{1}\text{A}} \rightarrow \text{CH}_{3}\text{COOH} + \text{CH}_{3}\text{CH}_{2}\text{COOH} \\ & \text{CH}_{3}\text{CO} & \left\{ \text{CH}_{2} - \text{CH}_{2}\text{CH}_{3} - \frac{\text{K}_{1}\text{cO}_{0}}{\text{H}_{3}\text{cO}_{1}\text{A}} \rightarrow \text{CH}_{3}\text{COOH} + \text{CH}_{3}\text{CH}_{2}\text{COOH} \\ & \text{Popoff's rule} \\ \rightarrow \quad \text{%C}, 86 \text{ mass contains 60 \text{ mass of C} \\ & 100 \text{ masss contai$
57.
$$A = C_{e}H_{3}CONH_{2}$$

$$C_{e}H_{3}CONH_{2} \xrightarrow{\text{KOILLR}_{e}} C_{e}H_{3}NH_{2}(B) \xrightarrow{\text{NANO}_{e}} C_{e}H_{3}N_{2}CI$$

$$C_{e}H_{3}CONH_{2} \xrightarrow{\text{IIANII}_{a}} C_{e}H_{3}CH_{2}NH_{2} \xrightarrow{\text{NANO}_{a}} C_{e}H_{3}CH_{2}OH$$

$$(C) \qquad (D)$$

$$C_{e}H_{3}CONH_{2} \xrightarrow{\text{IIANII}_{a}} C_{e}H_{3}CONH_{4} \xrightarrow{\text{ANO}_{a}} C_{e}H_{3}CONH_{2}$$

$$(A)$$
58.
$$\rightarrow \text{Annmonolysisof(i) alkylhalide (ii) alcohol ROH + HNH_{2} \xrightarrow{\text{ANO}_{a}} RNH_{2} + H_{2}O$$

$$\rightarrow \text{Reduction:}$$

$$(a) RC = N \xrightarrow{\text{H}_{a}/N} RCH_{2} NH_{2}$$

$$RNC + 2H_{2} \xrightarrow{\text{NIA}} RCH_{2} NH_{2}$$

$$(b) RCONH_{2} + 4H \longrightarrow RCH_{2} NH_{2} + H_{2}O$$

$$(c) RNO_{2} + 6H \xrightarrow{\text{Sol}/HCI} RNH_{2} + 2H_{2}O$$

$$(c) RNH_{2} + C_{e}H_{3}COCI \longrightarrow C_{e}^{2}H_{3}CON_{R}^{/H} + HCI$$

$$N-alkyl benzene carboxamide$$

$$(c) RNH_{2} + meth_{2} \xrightarrow{\text{Sol}/HCI} RNH_{2} + 2H_{2}O$$

$$(c) RNH_{2} + meth_{3} Coci H_{3} Conn_{R}^{/H} + HCI$$

$$ROH_{2} \xrightarrow{\text{Sol}/HCI} ROH_{2} \xrightarrow{\text{Sol}/HCI} RNH_{2} + H_{3}O$$

$$(c) RNO_{2} + 6H \xrightarrow{\text{Sol}/HCI} RNH_{2} + 2H_{2}O$$

$$(c) RNH_{2} + C_{e}H_{3}COCI \xrightarrow{\text{C}} C_{e}^{2}H_{3}CON_{R}^{/H} + HCI$$

$$N-alkyl benzene carboxamide$$

$$(c) ROH_{2} - M_{3} \xrightarrow{\text{C}/HCI} RNH_{4} + 2H_{2}O$$

$$(c) RNH_{2} + C_{e}H_{3} COCI \xrightarrow{\text{C}} C_{e}^{2}H_{3} CON_{R}^{/H} + HCI$$

$$(c) ROH_{2} - M_{3} \xrightarrow{\text{C}/HCI} RNH_{4} + 2H_{2}O$$

$$(c) RNO_{2} + 6H \xrightarrow{\text{Sol}/HCI} RNH_{4} + 2H_{2}O$$

$$(c) RNH_{2} + meth_{3} \xrightarrow{\text{C}/HCI} RNH_{4} + 2H_{3}O$$

$$(c) RNH_{2} - meth_{3} \operatorname{Coch} \xrightarrow{\text{C}/H} \xrightarrow{\text{C}/H} RNH_{4} + RCH_{3} \operatorname{ROH} \xrightarrow{\text{C}/H} \xrightarrow{\text{C}/$$

[315]

$$\begin{array}{l} (EWG) \text{ group. Due to resonance } \overline{e} \text{ density at 'N' decreases decreasing its } \overline{e} \text{ -donating tendency hence lowering the basic nature.} \\ 61. \rightarrow C_{\theta}H_{2}NH_{2} + NaNO_{2} + 2HCI \xrightarrow{\text{diazotiation}}_{0-S^{0}C} C_{\theta}H_{1}N_{2}CI + NaCI + 2H_{2}O \\ \rightarrow \text{ Balz - Schiemann reaction} \\ C_{\theta}H_{2}N_{2}CI + HBF_{4} \longrightarrow C_{\theta}H_{2}N_{2}BF_{4} \xrightarrow{A} C_{\theta}H_{3}F + N_{2} + BF_{3} \\ \rightarrow C_{\theta}H_{3}N_{2}CI + HJPO_{2} + H_{2}O \longrightarrow C_{\theta}H_{6} + N_{2} + H_{3}PO_{3} + HCI \\ \rightarrow \text{ Coupling reaction.} \\ C_{\theta}H_{3}N_{2}CI + H - \bigcirc -OH \longrightarrow \bigcirc -N = N - \bigcirc -OH \\ P-hydroxyazobenzene (orange dye) \\ 62. (i) RCOOH + HN_{3} \longrightarrow RNH_{2} + N_{2} + CO_{2} \\ (ii) RCN + 4H - \frac{Na + akcidel}{N2 + akcidel} RX - \frac{ak_{2}NH_{3}}{N}RH_{2} + N_{2} + CO_{2} \\ (iii) Armonolysis of alkyl halide- \\ RX - \frac{ak_{2}NH_{3}}{N}RNH_{2} - \frac{RX}{N} R_{2}NH - \frac{RX}{N} R_{3}N - \frac{RX}{N} R_{4} \stackrel{*}{N}X \\ Tetraalkylamminium halide (which on heating) forms alkene, termed as Hofmann's elimination reaction) \\ (iv) Acylation - \bigcirc + CH_{3}COCI \rightarrow \bigcirc \\ For the process of nitration of aniline, to avoid protonation of -NH_{2} group. \\ NH_{2} - \frac{H'_{2}}{CH_{3}OL_{4} + HNO_{3}} \stackrel{NH_{2}}{\bigoplus} \frac{(M_{1}^{O})}{MO_{2}} + \bigoplus (M_{1}^{O}) \stackrel{NH_{2}}{\longrightarrow} NO_{2} + \bigoplus (NO_{2}^{O}) \\ NO_{2} - RO_{2} - RO_{2} - RO_{2} \stackrel{NH_{2}}{\longrightarrow} NO_{2} + \bigoplus (NO_{2}^{O}) \stackrel{NH_{2}}{\longrightarrow} NO_{2} + \bigoplus (2, 4, 6-tribromoaniline) \end{array}$$

[317]

C₆H₅NH₂ Aniline forms diazonium chloride due to greater stability (by resonance) of benzolicazonium ion while CH₃N₂⁺ is unstable This diazonium salt couples with alkaline solution of β -naphthol to orange/red colour dye. 64. Linear, branched chain polymer, cross linkaed (Bakelite) (i) (Nylon) (Polythene) Addition polymer (PVC) (ii) Condensation polymer (Nylon 6, 6) (iii) Elastomer (Rubber) Thermoplastic polymer (Polypropylene, polystyrene) Fiber (Nylon 6, 6) Thermosetting polymer (Bakelite) Bio-degradable polymer (posing no threat to environment. Example: (i) PHPV - copolymer of 3-hydroxybutanoic acid and pentanoic acid (ii) dextron - co polymer of glycolic acid and lactic acid (iii) Nylon-2, 6 co-polymer of glycine & 6-aminohexanoic acid. Non-biodegradable polymer : Not degraded by micro-organisms leading to environmental pollution. polythene, PVC, bakelite & other commercially synthesised polymers. 65. \rightarrow (i) The process of heating natural rubber with sulfur & important additive like ZnO at 373 to 415 K to improve the properties is called vulcanisation. Properties: (a) excellent elasticity (b) low water absorbing tendency (c) Resistant to action of organic solvents, oxiding agents Quality of rubber (natural rubber) changes with % of sulfur. \rightarrow (ii) Initiation - Benzoylperoxide $C_6H_5 - CO - O \xrightarrow{>} O - CO - C_6H_5 \xrightarrow{} 0 2 C_6H_5CO.$ $C_{\epsilon}H_{\epsilon} - \overset{''}{O} - \overset{\cdot}{O} \longrightarrow C_{6}H_{5} + CO_{2}$ $C_6H_5 + CH_2 = CH_2 \longrightarrow C_6H_5CH_2 - CH_2$ **Propagation.** $CH_2 \stackrel{\bullet \bullet}{=} CH_2 + C_6H_5 - CH_2 - CH_2 \stackrel{\bullet}{\to} C_6H_5 - CH_2 - CH_$

$$\xrightarrow{(n-1)CH_2=CH_2} C_6H_5 - (CH_2 - CH_2)_n - CH_2 - CH_2$$

(
	Termination : The growing chain radical diactivates either by combination or by disproportionation to form a dead polymer.	
	Disproportionation: $C_6H_5 - (CH_2 - CH_2)_n - CH_2 - CH_2 \xrightarrow{\cdot} C_6H_5(CH_2 - CH_2)_n$	
	$-CH=CH_2 + C_6H_5 - (CH_2-CH_2)_n - CH_2-CH_3$	
		Dead polymers.
	$Combination: X' + X' \longrightarrow X - X$	
66.	Antibiotics refers to substances produced wholly or partly by chemical synthesis, wh in low concentrations inhibits the growth or destroy micro organisms intervent in their metabolic processes without harming the host.	
	Antibiotics have either cidal (killing) effect or a static (inhibitory) effect on microbes.	
	Bactericidal	Bacteriostatic
	Pencillin	Erythomycin
	Amingo glycosides	Tetracyclin
	Offloxacin	Chloramphenicol
	 Antibiotics which kill or inhibit a wide range of bacteria gram positive and gram negative. or other micro-organisms are said to be broad (e.g. ampicillin and amoxicilline chloramphenicol) spectrum antibiotics. Those which are effective for gram positive or gram negative bacteria are narrow spectrum antibiotic. If effective against a single organism or disease, the antibiotic is called limited spectrum antibiotic e.g. Pencillin-G. ii) Antiseptic : Antiseptic and disinfectants are the chemicals which either kill or prevent the growth of micro organisms. Antiseptics are applied to the living tissues such as wounds, cuts, ulcers and diseases skin surfaces. e.g. Dettol, (it's a mixture of chloro xylenol, soframycine, furacine tincture iodine, bithionol, 0.2% phenol solution [(0.2%) solution of phenol is antiseptic whereas 1% solution is disnfectent.] 	
	Narcotic - Releive pain and produce sleep.	
	Heavy intaketo be avoided. Morphine (opiate), Heroin, codemine Non - narcotic – paracetamol, aspirin (both are antipyretic also prevent platelet coagulation) Due to anti blood clotting action aspirin finds use in prevention of heart attacks.	
67.	 Soap - sodium or potassium salts of higher fatty acids (stearic acid, palmitic acid, ole acid) Types of soap - Synthetic detergents - (functions both in hard and soft water) Classification : 	
\rightarrow Anionic detergent - CH ₃ - (CH ₂) ₁₁ - \bigcirc - S \overline{O}_3 Na ⁺ , dodecylbenzene s		$_{1}^{-}$ O $ S\overline{O}_{3}$ Na ⁺ , dodecylbenzene sulfonate.
	There are ABS (alkyl benzene sulfonate) detergent.	

Cationic detergent - \rightarrow $\begin{bmatrix} CH_3 \\ | \\ CH_3 (CH_2)_{15} - N - CH_3 \\ | \\ CH_3 \end{bmatrix}^+ Br^-$ These have germicided properties and are expensive and of limited use. \rightarrow Non-ionic detergents. $CH_3(CH_2)_{16}COOH + HO(CH_2 - CH_2O)_nCH_2 - CH_2 - OH$ Stearic acid Polyethylene glycol 0 Dishwashing detergents are non-ionic. **Cleansing action** Emulsification / micelle formation favour cleansing. 68, 69 & 70 - refer Text. $\diamond \diamond \diamond$

