

# Chemistry

Workbook Cum Question Bank with Answers



SCHEDULED CASTES & SCHEDULED TRIBES
RESEARCH & TRAINING INSTITUTE (SCSTRTI)
ST & SC DEVELOPMENT DEPARTMENT
BHUBANESWAR



Workbook Cum Question Bank with Answers

**CLASS-XII (CBSE)** 

#### Compiled by

#### Dr. Narasingha Sahoo

Associate Professor in Chemistry (Retd.)

Dera Natung Govt. College, Itanagar,

Arunachal Pradesh



SCHEDULED CASTES & SCHEDULED TRIBES
RESEARCH & TRAINING INSTITUTE (SCSTRTI)
ST & SC DEVELOPMENT DEPARTMENT
BHUBANESWAR

2022

## **C**ONTENTS

| SI.<br>No. | Unit | Chapter                                 | Page<br>No. |
|------------|------|-----------------------------------------|-------------|
| 1.         | I    | Solutions                               | 1           |
| 2.         | II   | Electrochemistry                        | 11          |
| 3.         | III  | Chemical Kinetics                       | 22          |
| 4.         | IV   | d- and f - Block Elements               | 31          |
| 5.         | V    | Coordination Compounds                  | 43          |
| 6.         | VI   | Halo Alkanes and Haloarenes             | 56          |
| 7.         | VII  | Alcohols, Phenols and Ethers            | 69          |
| 8.         | VII  | Aldehydes, Ketones and Carboxylic Acids | 80          |
| 9.         | IX   | Aminies and Diagonium Salts             | 92          |
| 10.        | X    | Biomolecules                            | 104         |

\*\*\*

## Unit - I

### **SOLUTIONS**

I.

Select the correct answer from the choices given under each bit :

| 1. | Molality is expressed in                                                                   |                     |         |                                      |    | An elevation of boiling point of                                                                                                                                                                                                                                                                            |               |            |                     |  |  |  |
|----|--------------------------------------------------------------------------------------------|---------------------|---------|--------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|---------------------|--|--|--|
|    | (a)                                                                                        | (a) g/L             |         | L/mol.                               |    |                                                                                                                                                                                                                                                                                                             |               |            | ute (Mol. Mass      |  |  |  |
|    | (c)                                                                                        | mol L <sup>-1</sup> | (d)     | mol. kg <sup>-1</sup>                |    | = 100) is 100g of water is $\Delta T_b$ . The ebullioscopic constant for water                                                                                                                                                                                                                              |               |            |                     |  |  |  |
| 2. | The relative lowering of vapour pressure is proportonal to the ratio between the number of |                     |         |                                      |    | is  (a) $10$ (b) $10\Delta T_b$ (c) $\Delta T_b$ (d) $\Delta T_b/10$ Which of the following concentration term is not affected by temperature (a) Normality (b) Molality  (c) Molarity (d) Formality  A 5% solution of canesugar (Mola Mass = 342 g/mol) is isotonic with 1% solution of a substance X. The |               |            |                     |  |  |  |
| 3. | pre                                                                                        |                     | xpect   | est osmotic<br>ed by 0.1 M           |    | <b>mo</b> l<br>(a)<br>(c)                                                                                                                                                                                                                                                                                   | 171.2<br>34.2 | (b)<br>(d) | 68.4<br>136.2       |  |  |  |
|    | (a)                                                                                        | CaCl <sub>2</sub>   | (b)     | KCI                                  | 8. |                                                                                                                                                                                                                                                                                                             |               |            | g has highest       |  |  |  |
|    | (c)                                                                                        | Glucose             | (d)     | Urea                                 |    | <b>b.p</b> .<br>(a)                                                                                                                                                                                                                                                                                         | under 1 atn.  | -          | sure? 0.1 M sucrose |  |  |  |
| 4. |                                                                                            |                     | _       | salts will have<br>t Hoff factor (i) |    | (c)                                                                                                                                                                                                                                                                                                         |               |            | 0.1 M glucose       |  |  |  |
|    |                                                                                            |                     |         | errocyanide?                         | 9. | An aqueous solution freezes at $-0.186$ °C ( $K_f = 1.86$ K. kg mol <sup>-1</sup> ; $K_b = 0.512$ K. kg. mol <sup>-1</sup> ). The b.p. of the solution will be °C.                                                                                                                                          |               |            |                     |  |  |  |
|    | (a)                                                                                        | NaCl                |         |                                      |    |                                                                                                                                                                                                                                                                                                             |               |            |                     |  |  |  |
|    | (b)                                                                                        | Aluminium (         | Chloric | le                                   |    |                                                                                                                                                                                                                                                                                                             |               |            |                     |  |  |  |
|    | (c)                                                                                        | Ferric sulph        | ate     |                                      |    | (a)                                                                                                                                                                                                                                                                                                         | 100.186       | (b)        | 100.512             |  |  |  |
|    | (d)                                                                                        | Ferrous sulp        | ohate   |                                      |    | (c)                                                                                                                                                                                                                                                                                                         | 100.86        | (d)        | 100.512             |  |  |  |
|    |                                                                                            |                     |         |                                      |    |                                                                                                                                                                                                                                                                                                             |               |            |                     |  |  |  |

| 10. | coll | oids, polym                   | ers a  | molar mass of<br>and proteins,<br>preferred is | 15. | For an ideal solution of two volatile liquids (1 and 2), the total vapour P <sub>total</sub> is represented as : |                                                              |  |  |  |
|-----|------|-------------------------------|--------|------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
|     | (-)  |                               |        |                                                |     | (a)                                                                                                              | $P_{\text{total}} = X_1 p_1^0 + X_2 p_2^0$                   |  |  |  |
|     | (a)  | diffusion pre                 |        |                                                |     | (b)                                                                                                              | $P_{total} = p_1^0 + (p_2^0 - p_1^0)x_2$                     |  |  |  |
|     | (b)  | relative lower                | ing of | vapour pressure                                |     | (c)                                                                                                              | the total vapour pressure over the                           |  |  |  |
|     | (c)  | osmotic pres                  |        |                                                |     |                                                                                                                  | solution varies linearly with mole fraction of one component |  |  |  |
|     | (d)  | depression i                  | n free | zing point                                     |     |                                                                                                                  |                                                              |  |  |  |
| 11. |      |                               |        | s of solutions<br>which depend                 | 16. | <ul><li>(d) all are correctly represented</li><li>Choose the incorrect statement :</li></ul>                     |                                                              |  |  |  |
|     | on:  |                               |        |                                                |     | (a)                                                                                                              | The composition of vapour phase                              |  |  |  |
|     | (a)  | shape of the                  | •      | cles                                           |     | ( )                                                                                                              | i.e. above the solution obeys  Dalton's law                  |  |  |  |
|     | (b)  | nature of solv                | vent   |                                                |     | (b)                                                                                                              | At equilibrium, vapour phase v                               |  |  |  |
|     | (c)  | nature of par<br>number of pa |        |                                                |     |                                                                                                                  | be always rich in the compone                                |  |  |  |
|     |      | •                             |        |                                                |     |                                                                                                                  | which is more volatile                                       |  |  |  |
| 12. |      |                               |        | xed 3L of 0.5 M                                |     | (c)                                                                                                              | When $x_2 = 0$ , the vapour pressure                         |  |  |  |
|     |      |                               |        | is and                                         |     |                                                                                                                  | represents p <sub>2</sub> <sup>0</sup>                       |  |  |  |
|     | mol  | arity is                      | •      |                                                |     | (d)                                                                                                              | Higher the alue of $K_H$ at a given                          |  |  |  |
|     | (a)  | alkaline, 0.18                |        |                                                |     |                                                                                                                  | pressure lower is the solubility of the gas in liquid        |  |  |  |
|     | (b)  | acidic, 0.1 m                 |        |                                                |     |                                                                                                                  |                                                              |  |  |  |
|     | (c)  | alkaline, 1.8                 |        |                                                | 17. |                                                                                                                  | creasing the temperature of ar<br>ueous solution will cause  |  |  |  |
|     | (d)  | alkaline, 0.0                 | 18 M.  |                                                |     | (a)                                                                                                              | molality to decrease                                         |  |  |  |
| 13. | Wha  | at is the cor                 | ncent  | ration of KCI                                  |     | (b)                                                                                                              | molarity to decrease                                         |  |  |  |
|     | (aq) | that could                    | be u   | sed in blood                                   |     | (c)                                                                                                              | mole fraction to decrease                                    |  |  |  |
|     |      |                               |        | notic pressure                                 |     | (d)                                                                                                              | wt % to increase                                             |  |  |  |
|     | 7.81 | bar at 310K?                  | •      |                                                | 4.0 |                                                                                                                  |                                                              |  |  |  |
|     | (a)  | 0.16 m                        | (b)    | 0.32 m                                         | 18. |                                                                                                                  | e boiling point of equimolal eous solution will be minimum   |  |  |  |
|     | (c)  | 0.60 m                        | (d)    | 0.45 m                                         |     | for                                                                                                              | eous solution will be millimum                               |  |  |  |
| 14. | The  | Van't Hoff fac                | ctor f | or a solute that                               |     | (a)                                                                                                              | benzene diazonium chloride                                   |  |  |  |
|     | ass  | ociates in so                 | lutio  | n is                                           |     | (b)                                                                                                              | calcium nitrate                                              |  |  |  |
|     | (a)  | Zero                          | (b)    | 1.0                                            |     | (c)                                                                                                              | silver chloride                                              |  |  |  |

(c) Less than 1.0 (d) more than 1.0

(d)

glucose

| 19.         | in b                                               | enzene has                        | s mo    | of a compound<br>le fraction of<br>ne value of X is | 24. | Benzoic acid undergoes dimerization in benzene solution. The Van't Hoff factor (i) is related to the degree of association (x) of the acid as |                                     |          |                   |      |  |  |
|-------------|----------------------------------------------------|-----------------------------------|---------|-----------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|-------------------|------|--|--|
|             | (a)                                                | 14                                | (b)     | o) 3.2                                              |     |                                                                                                                                               | i = 1- x (b)                        |          |                   |      |  |  |
|             | (c)                                                | 1.4                               | (d)     | 2                                                   |     | (c)                                                                                                                                           | $i = 1 - \frac{x}{2}$               | (d)      | i = 1 + X         |      |  |  |
| 20.         | mol                                                | arity of liqui                    | d HC    | I if density of                                     |     | (0)                                                                                                                                           | 2                                   | (4)      | 2                 |      |  |  |
|             | solu                                               | solution is 1.17 g/mL is          |         |                                                     |     |                                                                                                                                               | ich of the                          | wina 0.1 | m                 |      |  |  |
|             | (a)                                                | 36.5                              | (b)     | 18.25                                               | 25. | equeous solution will have the lowest freezing point?                                                                                         |                                     |          |                   |      |  |  |
|             | (c)                                                | 32.05                             | (d)     | 42.10                                               |     |                                                                                                                                               |                                     |          |                   |      |  |  |
| 21.         | Tho                                                | The depression in freezing point, |         |                                                     |     | (a)                                                                                                                                           | $Al_2(SO_4)_3$                      | (b)      | $C_6 H_{12} O_6$  |      |  |  |
| <b>2</b> 1. |                                                    | is directly p                     |         | <b>.</b> ,                                          |     | (c)                                                                                                                                           | Urea                                | (d)      | KI                |      |  |  |
|             | (a)                                                | mole fraction                     | n of th | e solution                                          | 26. | The                                                                                                                                           | volume of v                         | vater    | to be added       | d in |  |  |
|             | (b)                                                | molarity of th                    | ne soli | ution                                               |     | 100 cc of 0.5 N H <sub>2</sub> SO <sub>4</sub> to get decinormal solution is :                                                                |                                     |          |                   |      |  |  |
|             | (c)                                                | molality of th                    | ie solu | ıtion                                               |     |                                                                                                                                               |                                     |          |                   |      |  |  |
|             | (d)                                                | moles of the                      | solve   | nt                                                  |     | (a)                                                                                                                                           | 100 cc                              | (b)      | 450 cc            |      |  |  |
| 22.         | Nor                                                | mality of 0                       | 3 M     | nhoenhorous                                         |     | (c)                                                                                                                                           | 400 cc                              | (d)      | 500 сс            |      |  |  |
|             | Normality of 0.3 M phosphorous acid $(H_3PO_3)$ is |                                   |         |                                                     | 27. | 18g                                                                                                                                           | 18g glucose is dissolved in 1 kg of |          |                   |      |  |  |
|             | (a)                                                |                                   |         |                                                     |     | water in a saucepan, the bo point of the solution is K                                                                                        |                                     |          |                   |      |  |  |
|             | (c)                                                | 0.9                               | (d)     | 0.1                                                 |     | poir                                                                                                                                          | nt of the soil                      | ition i  | s K.              |      |  |  |
|             |                                                    |                                   |         |                                                     |     | (a)                                                                                                                                           | 373.052                             | (b)      | 100.052           |      |  |  |
| 23.         |                                                    | -                                 |         | ution of two<br>intlower than                       |     | (c)                                                                                                                                           | 101                                 | (d)      | 273               |      |  |  |
|             | -                                                  | er of two wh                      | • .     |                                                     | 28. | The                                                                                                                                           | boiling po                          | int o    | f benzene         | is   |  |  |
|             | (a)                                                | shows a negative deviation from   |         |                                                     |     |                                                                                                                                               |                                     | _        | g of non-volatile |      |  |  |
|             |                                                    | Raoult's law                      |         |                                                     |     | solute was dissolved in 90                                                                                                                    |                                     |          |                   |      |  |  |
|             | (b)                                                | shows no deviation from Raoult's  |         |                                                     |     | benzene, the boiling point is raised to 354.11 K. The molar mass of the                                                                       |                                     |          |                   |      |  |  |
|             |                                                    | law                               |         |                                                     |     | solute is (K <sub>b</sub> for benzene is                                                                                                      |                                     |          |                   |      |  |  |
|             | (c)                                                | (c) shows positive deviation from |         |                                                     |     | 2.53 K. kg. mol <sup>-1</sup> )                                                                                                               |                                     |          |                   |      |  |  |
|             | Raoult's lav                                       |                                   | W       |                                                     |     | (a)                                                                                                                                           | 57.5                                | (b)      | 56.5              |      |  |  |
|             | (d)                                                | is saturated                      |         |                                                     |     | (c)                                                                                                                                           | 5 75                                | (d)      | 157 5             |      |  |  |

(c) 5.75 (d) 157.5

## 29. Which of the following is not the characteristic of ideal solution?

- (a)  $\Delta_{\text{mix}} H = 0$
- (b)  $\Delta_{mix} V = 0$
- (c) A A and B B interaction ≠ A B interaction
- (d) Cohesive interaction is same as adhesive interaction

## 30. Which of the following is not an ideal solution?

- (a) n-hexane, n-heptane
- (b) Bromoethane and Chloroethane
- (c) Benzene and toluene
- (d) Acetone and Chloroform

## 31. The molal depression constant depends upon

- (a) nature of the solute
- (b) nature of the solvent
- (c) vapour pressure of the solution
- (d) heat of solution of the solute in the solvent

## 32. Equimolar solutions in the same solvent have

- (a) same b.p (boiling point) but different freezing point
- (b) same freezing point but different boiling point
- (c) same boiling point and same freezing point
- (d) different boiling point and different freezing point.

## 33. Which of the following is a colligative property?

- (a) boiling point
- (b) freezing point
- (c) osmotic pressure
- (d) vapour pressure

## 34. Which of the following expression represents Van't Hoff factor?

- (a)  $i = \frac{\text{normal molar mass}}{\text{abnormal molar mass}}$
- (b)  $i = \frac{\text{abnormal molar mass}}{\text{normal molar mass}}$
- (c)  $i = \frac{\text{normal colligative property}}{\text{observed colligative property}}$
- (d) None of the above

# 35. During osmosis, flow of water through a semipermeable membrane is

- (a) from both sides of semipermeable membrane with unequal flow rates
- (b) from solution having higher concentraton only
- (c) from solution having lower concentration only
- (d) from both sides of semipermeable membrane with equal flow rates

# 36. If an aqueous solution of glucose is allowed to freeze, then crystals of which will be separated out first.

- (a) glucose
- (b) water
- (c) both of these (d) none of these

- 37. Concentrated aqueous H<sub>2</sub>SO<sub>4</sub> is 98% by mass and has density of 1.80 g.mL<sup>-1</sup>. Volume of the acid required to make 1 litre of 0.1 M H<sub>2</sub>SO<sub>4</sub> is
  - (a) 5.55 ml
- (b) 11.10 ml
- (c) 16.65 ml
- (d) 22.20 ml
- 38. A solution of acetone in ethanol
  - (a) behaves like a near ideal solution
  - (b) Obeys Raoult's law
  - (c) shows a negative deviation from Raoult's law
  - (d) shows positive deviation from Raoult's law
- 39. Comphor is often used in molecular mass determination because
  - (a) it is readily available
  - (b) it has a very high cryoscopic constant
  - (c) it is volatile
  - (d) it is solvent for organic substance
- 40. A pressure cooker reduces cooking time because :
  - (a) heat is more evenly distributed
  - (b) the higher pressure tenderises the food
  - (c) the boiling point of water inside the cooker is elevated
  - (d) the boiling point of water inside the cooker is depressed
- 41. Azeotropic mixture of HCl and H<sub>2</sub>O has
  - (a) 48% HCI (b) 20.2% HCI
  - (c) 22.2% HCI (d) 36% HCI

- 42. The depression in freezing point for 1M urea, 1M glucose and 1 M NaCl are in ratio
  - (a) 3:2:2
  - (b) 1:2:3
  - (c) 1:1:2
  - (d) none of the above
- 43. The aqueous solution that has lowest vapour pressure at a given temperature is
  - (a) 0.1 molal barium chloride
  - (b) 0.1 molal sodium chloride
  - (c) 0.1 molal glucose
  - (d) 0.1 molal sodium phosphate
- 44. A solute is soluble in two immiscible liquids which are present in a mixture. The concentration of the solute in the upper layer will be:
  - (a) less than in the lower layer
  - (b) more than in the lower layer
  - (c) in fixed ratio with that in the lower layer
  - (d) same as in the lower layer
- 45. The averge osmotic pressure of human blood is 7.8 bar at 37°C. What is the concentration of an aqueous NaCl solution that could be used in the blood stream?
  - (a) 0.60 mol/L (b) 0.45 mol/L
  - (c) 0.30 mol/L (d) 0.15 mol/L
- 46. Maximum freezing point falls in
  - (a) Naphthalene (b) Camphor
  - (c) Water (d) Benzene

- If  $\alpha$  is the degree of dissociation of Na<sub>2</sub>SO<sub>4</sub>, the Van't Hoff factor (i) used for calculating the molecular mass is
  - (a)  $1-\alpha$
- (b)  $1-2\alpha$
- (c)  $1+\alpha$
- (d)  $1+2\alpha$
- 48. The ionic strength of a solution containing 0.1 mol/kg of KCl and 0.2 mole/kg of CuSO<sub>4</sub> is:
  - 0.3 (a)
  - (b) 0.9
  - (c) 0.6
  - (d) 0.2

- 49. Which has the highest freezing point?
  - (a) 1 m KCl solution
  - 1 m K<sub>4</sub>[Fe(CN)<sub>6</sub>] solution (b)
  - 1 m C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> solution (c)
  - 1 m rock salt solution (d)
- **50**. The solution which has the lowest freezing point is
  - (a) 0.1 M potassium nitrate
  - 0.1 M potassium sulphate (b)
  - (c) 0.1 M alumunium sulphate
  - (d) 0.1 M potassium chloride

### Answer Keys

- I. Select the correct answer from the choices given under each bit :
- 1. (d)
- 11. (d)
- 21. (c)
- 31. (b)
- 41. (b)

- 2. (b)
- 12. (a)
- 22. (b)
- 32. (c)
- 42. (c)

- 3. (a)
- 13. (b)
- 23. (c)
- 33. (c)
- 43. (d)

- 4. (c)
- 14. (c)
- 24. (c)
- 34. (a)
- 44. (c)

- 5. (b)
- 15. (d)
- 25. (a)
- 35. (a)
- 45. (d)

- 6. (b)
- 16. (c)
- 26. (c)
- 36. (b)
- 46. (b)

- 7. (b)
- 17. (b)
- 27. (a)
- 37. (a)
- 47. (d)

- 8. (c)
- 18. (d)
- 28. (a)
- 38. (d)
- 48. (b)

- 9. (d)
- 19. (b)
- 29. (c)
  - 39. (b)
- 49. (c)

- 10. (c)
- 20. (c)
- 30. (d)
- 40. (c)
- 50. (c)

#### II. Short Questions

- Q.1. Which out of molality, molarity and mole fraction of a solution will remain unchanged on raising the temperature and why?
- **Ans.** Mole fraction and molality depend upon masses and do not change with temperature. Where as molarity depends upon volume which changes with change in temperature.
- Q.2. State Raoult's law. Derive its mathematical expression.
- **Ans.** The vapour pressure of the solution containing non-volatile solute is directly proportional to the mole fraction of the solvent.

In a solution containing two components A (solvent) and B (solute-non-volatile). So the vapour pressure  $P_A = P_A^0 X_A$  and  $P_B = P_B^0 X_B$  where  $X_A$  and  $X_B$  are mole fractions and  $P_A^0$ ,  $P_B^0$  are vapour pressure at pure state of each component.

Total 
$$P = P_A + P_B = P_A^0 X_A + P_B^0 X_B = P_A^0 (1 - X_B) + P_B^0 X_B$$
  
=  $P_A^0 - P_A^0 X_B + P_B^0 X_B = P_A^0 - (P_A^0 - P_B^0) X_B$ 

So the total pressure is a linear function of mole fraction.

- Q.3. Show that the relative lowering of vapour pressure for a solution is equal to the mole fraction of the solute in volalile solvent.
- **Ans.** Vapour pressure of solution = molefraction of the solvent x vapour pressure of pure solvent

i.e. 
$$P_s = X_1 \times P_0$$
 or  $\frac{P_s}{P_0} = X_1 = \frac{n_1}{n_1 + n_2}$  or  $1 - \frac{P_s}{P_0} = 1 - \frac{n_1}{n_1 + n_2}$  or  $\frac{P_0 - P_s}{P_0} = \frac{n_2}{n_1 + n_2} = X_2$  (mole fraction of solute)

- Q.4. Explain the term ideal solution.
- **Ans.** The ideal solution in which
  - (i) no change in volume on mixing the two components,  $\Delta V_{mix} = 0$
  - (ii) no change in ethalpy,  $\Delta H_{mix} = 0$
- Q.5. How does non-ideal solution differ from ideal solution?

#### Ans. Ideal solution Non-ideal solution

(i) Obey's Raoult's law i.e.

$$P_A = P_A^0 X_A$$
 and  $P_B = P_B^0 X_B$ 

(ii) 
$$\Delta H_{mix} = 0$$

(iii) 
$$\Delta V_{mix} = 0$$

(i) 
$$P_A \neq P_A^0 X_A, P_B \neq P_B^0 X_B$$

(ii) 
$$\Delta H_{mix} \neq 0$$

(iii) 
$$\Delta V_{mix} \neq 0$$

- Q.6. Define the term calligative property.
- **Ans.** Those properties of ideal solutions which depend only on the number of particles of the solute dissolved in a difinite amount of the solvent and do not depend on the nature of solute, are called colligative property.
- Q.7. Show that relative lowering of vapour pressure is a colligative property.
- **Ans.**  $P_A = P_A^0 X_A$  Where  $P_A = Vap$ . pr. of solvent  $P_A^0 = vapour$  pressure of solvent at pure state and  $X_A = vapour$  molefraction of solvent.

But mole fraction of solute = 
$$X_B = \frac{n_B}{n_A + n_B}$$

As 
$$X_A + X_B = 1$$
 or  $X_A = 1 - X_B$ 

On substitution 
$$P_{A} = P_{A}^{0}(1 - X_{B}) = P_{A}^{0} - X_{B}P_{A}^{0}$$
 or  $P_{A}^{0} - P_{A} = P_{A}^{0}X_{B}$  or  $\frac{P_{A}^{0} - P_{A}}{P_{A}^{0}} = X_{B}$ 

Where 
$$\frac{P_A^0 - P_A}{P_A^0}$$
 = relative lowering of vapour pressure

and  $X_{\scriptscriptstyle B}$  depends upon number of moles of solute.

- Q.8. Define Osmosis and Osmotic pressure.
- **Ans. Osmosis:** The spontaneous flow of solvent molecules from the solvent to the solution or from a less concentrated solution to a more concentrated solution through a semipermeable membrane is called osmosis.

**Osmotic Pressure**: The excess hydrostatic pressure that has to be applied on the solution to prevent the entry of solvent into the solution through the semiprermeable membrane is called osmotic pressure.

- Q.9. How the osmotic pressure depends upon the number of moles of the solute?
- Ans. The osmotic pressure ( $\pi$ ) is related to concentration and temperature i.e.  $\pi\alpha$  Cx T or  $\pi$ =R'CT where R'= solution constant.

But 
$$C = \frac{n}{V}$$
 where n = number of moles, V = volume of the solution

$$\therefore \pi = R' \frac{n}{V} T \text{ or } \pi V = nR' T$$

This equation is known as Van't Hoff's solution equation.

- Q.10. Explain why freezing point is lowered on dissolving a non-volatile solute into it.
- **Ans.** When non-volatile solute is added to the solvent, the solute molecules occupy the space on the surface, so vapour pressure decreases. Hence freezing point is lowered.

## Q.11. Why do electrolytes show abonormal molecular masses? Name the factors responsible for abnormality.

Ans. In case of aqueous solutions of electrolyte; some acids and some inorganic bases like NaOH, KOH or salts like NaCl, KCl, KNO<sub>3</sub> dissociate and the number of particles in solution increaes. Similarly certain substances associate such as CH<sub>3</sub>COOH and benzoic acid in benzene. So number of particles decreases. As a result colligative property changes so as the molecular mass.

#### Q.12. What is Van't Hoff's factor?

**Ans.** It is the ratio of the experimental value of the colligative property to the calculated value of the colligative property, that is Van't Hoff's factor (i).

$$i = \frac{\text{Experimental Colligative Property}}{\text{Calculated Value of Colligative Property}}$$

#### Q.13. State Henry's Law what is its significance?

Ans. The solubility of a gas at a given temperature is directly proportional to the pressure of the gas at which it is dissolved. It is written as  $P_A = K_H X_A$  (where  $P_A = Partial$  pressure,  $X_A = Mole$  fraction,  $K_H = Henery's$  constant)

At constant temperature for the same partial pressure of different gases,  $X_A \alpha \frac{1}{K_H}$ . That is the solubility is inversely proportional to Henry's constant of the gas. Higher the value of  $K_H$ , lower is the solubility.

#### Q.14. What is molal elevation constant?

**Ans.** Molal elevation constant is the elevation in its boiling point when one mole of non-volatile solute is dissolved per kilogram of solvent. (Unit is K. kg. mol<sup>-1</sup>)

#### Q.15. Derive the relationship between depression in freezing point and the molality.

**Ans.** The depression in freezing point is  $\Delta T_f = K_f m$ . Where  $K_f = molal$  depression constant.

And m (molality of the solution) = 
$$\frac{W_B}{M_B} = \frac{1000}{W_A}$$
.

Where  $W_A$  = Mass of solvent,  $W_B$  = Mass of solute.  $M_B$  = Molar mass of the solute.

$$\therefore \, M_{B} = \frac{K_{_{f}} \, \, x \, \, W_{_{B}} \, \, x \, \, 1000}{W_{_{\Delta}} \, \, x \, \, \Delta T_{_{f}}} \label{eq:mass_mass_mass_mass}$$

- Q.16. What are isotonic solutions? Give one example.
- **Ans.** Solutions having equal osmotic pressure eg. 0.1 M glucose and 0.1 M sucrose solutions.
- Q.17. Define molal depression constant.
- **Ans.** The depression in freezing point that takes place when the molality of the solution is unity.
- Q.18. What is the purpose of sprinkling common salt on ice slit?
- **Ans.** Common salt lowers the freezing point of water to such an extent that it does not freeze to form ice. hence it is used to sprinkle on ice slit.
- Q.19. Why NaCl solution freezes at lower temperature than water but boils at higher temperature than water?
- **Ans.** When the solute (NaCl) is dissolved in a solvent (water), the vapour pressure decreases. As a result, the solution boils at a higher temperature while solvent freezes at lower temperature.
- Q.20. When the Vant' Hoff factor is more than one?
- **Ans.** When the solute undergoes dissociation in the solution, then i>1.
- Q.21. How is molality of a solution different from its molarity?
- **Ans.** Molality of a solution is the number of moles of the solute present in 1 kg of the solvent and does not change with temperature. Molarity of a solution is the number of moles of the solute present in 1 litre of the solution and changes with temperature.
- Q.22. What is reverse osmosis?
- **Ans.** Reverse osmosis occurs when pressure greater than osmotic pressure is applied on the solution.
- Q.23. Why does water from the soil rise to the top of a tall tree?
- **Ans.** Due to osmosis, the roots pass the water which acts as semipermeable membrane of root cell walls and pass to the top of the tall tree.
- Q.24. Which substance usually added into water in the car radiator to act as antifreeze?
- **Ans.** Ethyleneglycol is added to water to lower the freezing point.
- Q.25. What is the condition of non-ideal solutions to show negetive deviation?
- **Ans.** If new forces of interaction between the components are greater than those in the pure components, then only non-ideal solution will show negative deviation.

#### UNIT - II

#### **ELECTROCHEMISTRY**

- I. Select the correct answer from the choices given under each bit :
- 1. The unit of equivalent conductance is :
  - (a) Ohm-1.cm-1 (b) Ohm-1.cm-2
  - (c) Ohm-1. cm-2 (d) None of these
- 2. Effect of dilution on conductance is :
  - (a) Specific conductance increases, molar conductance decreases
  - (b) Specific conductance decreases, molar conductance increases
  - (c) Both decrease in dilution
  - (d) Both increase in dilution
- 3. In Daniell cell, Zn/ZnSO<sub>4</sub> Il CuSO<sub>4</sub>/Cu
  - (a) Zinc undergoes oxidation and copper undergoes reduction
  - (b) Zinc undergoes reduction and copper undergos oxidation
  - (c) Oxidation reduction does not take place
  - (d) Oxidation takes place both sides
- 4. In the electrolytic cell, flow of electrons is from
  - (a) Cathode to anode in the solution
  - (b) Anode to cathode through internal supply
  - (c) Cathode to anode through external supply
  - (d) Cathode to anode through internal supply

- 5. The molar conductivity of a strong electrolyte:
  - (a) increases linearly with concentration
  - (b) increases with square root of concentration in a linear fashion
  - (c) decreases linearly with concentration
  - (d) decreases with square root of concentration in a linear fashion
- 6. Which of the following is false?
  - (a) Saline water increases rusting
  - (b) In Daniell cell, if concentrations of the solutions are doubled, the emf of the cell is also doubled
  - (c) Emf of the cell is intensive quantity and free energy change in extensive quality
  - (d) Galvanised iron sheets remain protected from rusting even if a crack is developed
- 7. Conductivity of an electrolytic solution depends on :
  - (a) nature of electrolyte
  - (b) concentration of electrolyte
  - (c) power of AC source
  - (d) distance between the electrodes

8. Arrange the following metals in order of reactivity.

Cu, Fe, Zn, Ag

- (a) Zn > Cu > Fe > Ag
- (b) Zn > Fe > Ag > Cu
- (c) Zn > Fe > Cu > Ag
- (d) Fe > Zn > Cu > Ag
- 9. The metal is used for cathodic protection of iron against rusting
  - (a) Zn
- (b) Cu
- (c) Cd
- (d) Pb
- 10. In an electrochemical cell
  - (a) Potential energy changes into electrical energy
  - (b) Chemical energy changes into electrical energy
  - (c) Kinetic energy decreases
  - (d) Potential energy decreases
- 11. Which of the following decreases with dilution
  - (a) Conductance
  - (b) Specific conductance
  - (c) Equivalent conductance
  - (d) Molar conductance
- 12. The standard electrode potential of Normal Hydrogen Electrode (NHE) is
  - (a) 1
- (b) 1.5
- (c) 100
- (d) Zero

- 13. The salt bridge is used in an electrochemical cell because :
  - (a) electrons flow from anode to cathode
  - (b) ions flow from one solution to the other
  - (c) it enhances the +ve ions in the solution
  - (d) it may be eliminated to achieve electrical neutrality
- 14. If n-electrons are involved in the electrode reaction, the passage of electricity required to liberate one mole of the substance is:
  - (a) 24125 C
- (b) 96500 C
- (c)  $\frac{96500}{n}$  C
- (d) n x 96500 C
- 15. For strong electrolytes, the plot of molar conductnce vs  $\sqrt{c}$  is
  - (a) parabolic
- (b) circular
- (c) linear
- (d) sinusoidal
- 16. The best way to prevent rusting of iron is by
  - (a) making iron anode
  - (b) making iron cathode
  - (c) putting it in saline water
  - (d) none of these
- 17. In which cell the free energy of chemical reaction is directly converted into electricity.
  - (a) Leclanche cell
  - (b) Concentration cell
  - (c) Fuel cell
  - (d) Lead storage battery

#### 18. The electrolysis of aqueous NaCl solution gives.

- (a) Na and Cl<sub>2</sub> (b) Na & Cl
- (c) H<sub>2</sub> and Cl<sub>2</sub> (d) Na and H<sub>2</sub>

#### 19. For measuring electrolytic conductance, the current is used

- (a) Only AC
- (b) Only DC
- Both AC & DC(d) None of these (c)

#### 20. Conductance is

- (a) directly proprotional to resistance
- inversibly proportional to resistance (b)
- (c) equal to the resistane
- (d) none of these

#### 21. Each ion makes a definite contribution to the total molar conductivity of an electrolyte at infinite dilution, is

- (a) Ohm's Law
- (b) Arrhenius Rule
- (c) Nernst Rule
- (d) Kohlrausch's Rule

#### The relationship between free energy AG and EMF of the cell is

- (a)
- $\Delta G = nFE$  (b)  $\Delta G = -nFE$
- (c)  $E = \frac{\Delta G}{n}F$  (d)  $\Delta G = \frac{EF}{n}$

#### Zinc reacts with dilute H<sub>2</sub>SO<sub>4</sub> to give gas but copper does not, because

- Zinc has higher oxidation potential (a) than hydrogen
- (b) Zinc has lower oxidation potential than hydrogen
- Copper has higher oxidation potential than hydrogen
- none of these (d)

#### 24. The EMF of the cell is

- (a) The difference between electropotentials of two half cells
- (b) The differene between potentials of two cells
- The electrode potential of two cells (c)
- The electrode potential of different (d)

#### 25. The reduction potential of an electrode increases.

- with decrease in concentration of (a) the ions
- with addition of other salt solution (b)
- with increase in concentration of (c) ions
- with the removal of power suply to the cell

#### The EMF of the cell, when the cell 26. attains equlibrium is:

- (a) 1
- (b) Zero
- (c) Maximum
- (d) 0.0591

#### **27**. Which metal can be used in cathodic protection of iron.

- (a) Na
- (b) Cd
- (c) Li
- Zn (d)

#### Which type of cell is used in hearing aids?

- (a) Zn/MnO<sub>2</sub> Cell
- (b) Zn/HgO
- Lead Storge Battery (c)
- (d) Fuel Cell of H<sub>2</sub> O<sub>3</sub>

## 29. An electrochemical cell stops working after sometime because.

- (a) one of the electrodes is consumed
- (b) electrode potentials of both electrodes go on decreasing
- (c) electrode potential of both the electordes becomes equal in magnitude
- (d) electrode potential of both the electrodes go on increasing

## 30. Which of the following statement is true for Daniell Cells

- (a) Current flows from Zn electrode to Cu electrode
- (b) Cations move towards Cu electrode
- (c) Electrons flow from Cu electrode to Zn electrode
- (d) Cations move towards Zn electrode

## 31. Which of the following materials are used in making mercury cell

- (a) Mercury Zinc oxide
- (b) Zinc Zinc oxide
- (c) Zinc Mercuric oxide
- (d) Mercury ammonium chloride

#### 32. The unit of conductance is

- (a) S m<sup>2</sup> mol<sup>-1</sup>
- (b) S m<sup>-1</sup>
- (c) m<sup>-1</sup>
- (d) S (Siemens)

#### 33. Specific conductance

- (a) decreases with dilution
- (b) decreases with increse in concentration
- (c) shows no variation with dilution
- (d) has no effect on concentration

## 34. When lead storage battery is discharged

- (a) SO<sub>2</sub> is evolved
- (b) lead sulphate is consumed
- (c) lead is formed
- (d) sulphuric acid is consumed

## 35. Which of the following ions has highest limiting molar conductivity?

- (a) Mg<sup>2+</sup>
- (b) Ca<sup>2+</sup>
- (c) Na<sup>+</sup>
- (d) K+

## 36. A standard hydrogen electrode has zero electrode potential because

- (a) hydrogen is easier to oxidise
- (b) this electrode potential is assumed to be zero
- (c) hydrogen atom has only one electron
- (d) hydrogen is the lightest element

## 37. Zn gives H<sub>2</sub> gas with H<sub>2</sub>SO<sub>4</sub> and HCI but not with NHO<sub>3</sub> because

- (a) Zn acts as an oxidising agent when reacts with HNO<sub>3</sub>
- (b)  $HNO_3$  is weaker acid than  $H_2SO_4$  and HCI
- (c) In electrochemical series, Zn is above hydrogen
- (d) NO<sub>3</sub> is reduced in preference to hydronium ion

#### Saturated solution of KNO<sub>3</sub> is used 38. to make 'salt bridge' because

- Velocity of K<sup>+</sup> is greater than than of NO<sub>2</sub>
- (b) Velocity of NO<sub>3</sub> is greater than that
- (c) Velocities of both K<sup>+</sup> and NO<sub>3</sub><sup>-</sup> are nearly the same
- KNO<sub>3</sub> is highly soluble in water

#### 39. The conductivity of strong electrolyte

- increases slightly on dilution (a)
- decreaes on dilution (b)
- (c) does not change with dilution
- depends upon the density of (d) electrolyte
- 40. The molar conductivities  $_{\Lambda_{\text{NeOAc}}}^{0}$  and  $^{\text{0}}_{\text{AHCI}}$  at infinite dilution in water at 25°C are 91.0 and 426.2 ohm-1. cm<sup>2</sup>. mol-1 respectively. To calculate  $^{\text{0}}_{\Lambda_{\text{HOAC}}}$  the additional value required is
  - (a)
- (c)

#### If half cell reaction $A + e^- \rightarrow A^-$ has a large negative reduction potential, it follows that

- A is readily reduced
- (b) A is readily reduced
- (c) A is readily oxidised
- (d) A is readily oxidised

#### 42. For the cell reaction

$$Cu_{C_1 \text{ aq})}^{2+} + Zn(S) \rightarrow$$

 $Zn^2(C_2aq)+Cu(S)$ 

of an electrochemical cell, the change in free energy AG, at a given temperature is a function of

- (a) InC<sub>2</sub>
- (c)
- $ln(C_2/C_1)$  (d)  $ln(C_1 + C_2)$

#### 43. Equivalent conductance of NaCl and C<sub>2</sub>H<sub>5</sub> COONa at infinite dilution are 126.45, 42.16 and 91 ohm<sup>-1</sup>.cm<sup>2</sup> respectively. The equivalent conductance of $C_2H_5COOH$ is

- 390.71 ohm<sup>-1</sup>.cm<sup>2</sup> (a)
- (b) 698.28 ohm<sup>-1</sup>.cm<sup>2</sup>
- 540.48 ohm<sup>-1</sup>.cm<sup>2</sup> (c)
- (d) 201.28 ohm<sup>-1</sup>.cm<sup>2</sup>

#### 44. The ionic conductance of Ba<sup>2+</sup> and Cl<sup>-</sup> are respectively 127 and 76 ohm<sup>-1</sup>.cm<sup>2</sup> at infinite dilution. The equivalent conductance (in ohm<sup>-1</sup>.cm<sup>2</sup>) of BaCl, at infinite dilution will be

- (a) 101.5
- (b) 139.5
- (c) 203
- (d) 279

#### **45**. As lead storage battery is charged

- lead electrode becomes coated with lead sulphate
- (b) lead dioxide dissolves
- (c) sulphuric acid is regenerated
- the concentration of sulphuric acid (d) decreases

#### In electrolysis of NaCI, when platinum electrode is taken, then H<sub>2</sub> is liberated at the cathode while with mercury cathode it forms sodium amalgam. This is because

- (a) Hg is more inert than Pt.
- (b) Na is dissolved in Hg while it does not dissolve in Pt.
- more voltage is required to (c) reduce H<sup>+</sup> at Hg than Pt.
- (d) Conc. of H<sup>+</sup> ions is larger when Pt. electrode is taken
- 47. What is the emf of the given cell?  $Pt|H(p_1)H(aq)|H(p_2)|Pt$ 

  - (a)  $\frac{RT}{F} \ln \frac{p_1}{p_2}$  (b)  $\frac{RT}{F} \ln \frac{p_2}{p_1}$
  - (c)  $\frac{RT}{2F} \ln \frac{p_1}{p_2}$  (d) none of these

- 48. The highest electrical conductivity of the following aqueous solutions is of
  - 0.1 M difluoroacetic acid (a)
  - (b) 0.1 M fluoracetic acid
  - 0.1 M chloroacetic acid (c)
  - (d) 0.1 M acetic acid
- 49. The charge required for the reduction of 1 mol of KMnO<sub>4</sub> to MnO, is
  - 5 F (a)
- 6 F (b)
- (c) 3 F
- (d) 1 F
- 50. When a strip of copper is dipped in a solution of ferrous sulphate,
  - copper is precipitated (a)
  - (b) iron is deposited on the copper strip
  - copper dissolves (c)
  - (d) no reaction occurs

## Answer Keys

- Select the correct answer from the choices given under each bit : I.
- 1. (c)
- 11. (b)
- 21. (d)
- 31. (c)
- 41. (d)

- 2. (b)
- 12. (d)

- 22. (b)
- 32. (d)
- 42. (c)

- 3. (a)
- 13. (b)
- 23. (a)
- 33. (a)
- 43. (a)

- 4. (d)
- 14. (d)
- 24. (a)
- 34. (d)
- 44. (b)

- 5. (d)
- 15. (c)
- 25. (c)
- 35. (b)
- 45. (c)

- 6. (b)
- 16. (b)
- 26. (b)
- 36. (b)
- 46. (c)

- 7. (b)
- 17. (b)
- 27. (d)
- 37. (d)

- 47. (c)

- 8. (c)
- 18. (c)
- 28. (b)
- 38. (c)
- 48. (a)

- 9. (a)
- 19. (a)
- 29. (c)
- 39. (a)

- 49. (c)

- 10. (b)
- 20. (b)
- 30. (b)
- 40. (b)
- 50. (d)

#### II. **Short Questions**

#### Q.1. Illustrate the differences between electrochemical cell and electrolytic cell.

Ans. **Electrochemical Cell** 

> (i) It is the device to convert chemical energy into electrical enregy.

(ii) It is spontaneous redox reaction

(iii) Salt bridge is used

**Electrolytic Cell** 

It is the device to convert electrical (i) energy to chemical energy.

(ii) It is non-spontaneous redox reaction.

(iii) No salt bridge is used

What is the relationship between Gibb's free energy  $\Delta G$  and electrial energy  $E_{Cell}$ ? Q.2.

**Ans.**  $-\Delta G = nFE_{Cell}$  where  $\Delta G = Gibb's$  free energy. (Work done)

Electrical work done where n = number of electrons.

F= Faraday,  $E_{Cell}$  = EMF fof the Cell

Calculate E<sub>Cell</sub> of the cell Zn/Zn<sup>2+</sup> II Cu<sup>2+</sup>/Cu. Q.3.

Where  $E_{Z_{1},Z_{2}^{2+}}^{0}$  = -0.76 Volt,  $E_{Cu,Cu^{2+}}^{0}$  = 0.34 Volt

**Ans.**  $E_{Cell}^0$  = Standard Electrode Potential - Standard Electrode Potential of of Right hand side

electrode

= 0.34 Volt - (- 0.76) Volt

= 1.10 Volt

Left hand side

= Reduction potential of Cu - Reduction Potential of Zn electrode

State Kohlrausch's law. How will you calculate  $\lambda^0$  of Ba(OH)<sub>2</sub> with the help of Q.4. this law?

Kohlrausch law for Ax By =  $x\lambda_{\perp}^{0} + y\lambda_{\parallel}^{0}$ Ans.

For 
$$Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^-$$
  
 $\bigwedge_{Ba(OH)_2}^0 = \lambda_{Ba^{2+}}^0 + 2\lambda_{OH^-}^0$ 

Define the terms: specific conductance and equivalent conductance. Q.5.

Specific Conductance = Conductance of one centrimeter cube of the solution of the Ans.

electrolyte i.e. 
$$K = \frac{1}{\rho}x\frac{l}{a}$$

Equivalent Conductance  $\land_{eq} = K \times \frac{1000}{Normality}$ 

- Q.6. Write notes on reduction and oxidation potential.
- **Ans.** Oxidation potential, if oxidation takes place at the electrode with respect to standard hydrogen electrode.

Reduction potential, if reduction takes place at the electrode with respect to standard hydrogen electrode.

- Q.7. What is secondary cell? Give the cell reaction of Nickel-Cadmium storage cell.
- **Ans.** The secondary cells are those which can be recharged by passing an electric current through them and then can be used over and again.

Nickel - Cadmium cell consists of a cadmium electrode (as anode) and a metal containing Nickel (IV) oxide (as cathode) immersed in KOH solution.

At anode 
$$Cd(s) + 2OH_{aq}^{-} \rightarrow Cd(OH)_{2(s)} + 2e^{-}$$

At cathode 
$$NiO_{2(S)} + 2H_2O + 2e^- \rightarrow Ni(OH)_{2(S)} + 2OH_{aq}^-$$

- Q.8. Why a dry cell becomes dead after a long time even if it has not been used?
- **Ans.** In dry cell NH<sub>4</sub>Cl is used. This corrodes the zinc container even if not used for long time.
- Q.9. Explain the terms specific, equivalent and molar conductivity. How they are interrelated?

**Ans.** 
$$\wedge_{eq}^{0} = K x \frac{1000}{Normality}$$
 and  $\wedge_{m}^{0} = K x \frac{1000}{Normality}$ ,  $K = Specific conductivity$ 

- Q.10. Describe the construction of Daniell Cell and the reaction involved. How is it represented?
- Ans. Daniel Cell: The Zinc electrode dipped into Zinc sulphate solution and copper electrode dipped into copper sulphate solution. Oxidation takes place at Zn electrode and reduction takes place at Cu electrode. Both solutions are connected with salt bridge. The reactions are:

Oxidation reaction : 
$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

$$\frac{\text{Reduction reaction}: Cu^{2+} + 2e^{-} \rightarrow Cu}{\text{Total Reaction}: Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu}$$

The cell is represented as.  $\rm Zn/ZnSO_4$  II  $\rm CuSO_4$  I  $\rm Cu$ .

#### Q.11. Give short notes of corrosion? How can it be prevented?

- **Ans.** Corrosion: The process of slowly eating away of the metal due to attack of the atmospheric gases on the surface of the metal resulting into the formation of compound. It can be protected:
  - (i) By coating with paint
  - (ii) The metal is convered with more active metal
  - (iii) Making cathodic protections
  - (iv) Using anti rust solution

## Q.12. What is difference between Galvanic Cell (electrochemical cell) and electrolytic cell?

**Ans.** Galvanic cell is an electrochemical cell and Electrolytic cell is the conversion of electrical energy to chemical energy.

#### Q.13. Why is it necessary to use salt bridge in a galvanic cell?

**Ans.** Salt bridge is used to complete the inner circuit and maintain the electrical neutrality in the solution.

#### Q.14. Equilibrium constant is related to $E_{Cell}^0$ but not $E_{Cell}$ . Explain why?

**Ans.** When equilibrium is reached in the cell reaction,  $E_{Cell}$  becomes zero. Hence applying Nernst equation at the cell reaction.

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

$$\mathsf{E}_{\text{Cell}} = \mathsf{E}_{\text{Cell}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{In} \frac{[\mathsf{Zn}^{2^{+}}]}{[\mathsf{Cu}^{2^{+}}]} \text{ or } \mathsf{E}_{\text{Cell}}^{0} = \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{In} \frac{[\mathsf{Zn}^{2^{+}}]}{[\mathsf{Cu}^{2^{+}}]} = \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{In} \mathsf{K}_{\text{C}}$$

#### Q.15. Why a mercury cell gives a constant voltage throughout its life?

**Ans.** Because the electrolyte KOH is not consumed in the reaction.

#### Q.16. Which type of Cells are rechargeable?

**Ans.** The rechargeable cell in which the product fromed during discharge are deposited on the electrodes and these can e decomposed when electrical energy is supplied.

#### Q.17. Give the relationship between molar conductivity and specific conductivity.

**Ans.** 
$$\wedge_{m}^{0} = Kx \frac{1000}{Molarity}$$
 Where K = specific conductivity.

#### Q.18. What is EMF of a Cell?

**Ans.** The difference between the electrode potentials of the two half cells is known a EMF of the cell.

## Q.19. How Nernst equation can be applied in the calculation of equilibrium constant of any cell reaction?

Ans. Let us take the cell as Zn/ZnSO<sub>4</sub> II CuSO<sub>4</sub>/Cu

At equilibrium the flow of electrons from Zn to Cu stops.

When 
$$E_{Zn^{2+}/Zn}$$
 equals with  $E_{Cu^{2+}/Cu}$ .

Applying Nernst equation for the cell potential

$$\mathsf{E}_{\mathsf{Cell}} = \mathsf{E}_{\mathsf{Cell}}^{0} + \frac{\mathsf{RT}}{\mathsf{nF}} l \, \mathsf{n} \frac{[\mathsf{Cu}^{2^{+}}]}{[\mathsf{Zn}^{2^{+}}]} = \mathsf{E}_{\mathsf{Cell}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}} l \, \mathsf{n} \frac{[\mathsf{Zn}^{2^{+}}]}{[\mathsf{Cu}^{2^{+}}]}$$

Taking 
$$\frac{[Zn^{2+}]}{[Cu^{2+}]} = K_c$$
 then the equation is  $O = E_{Cell}^0 - \frac{RT}{nf} \ln K_C$ 

or 
$$E_{\text{Cell}}^0 = \frac{RT}{nF} \ln K_c$$
.

#### Q.20. Why does galvanic cell become dead after sometime?

**Ans.** During lapse of time concentrations of electrolytic solutions change so as electrode potentials. When the electrode potentials of the two half cells becomes equal, the cell stops working.

#### Q.21. Why rusting of iron is more in saline water than in pure water.

**Ans.** In saline water Na<sup>+</sup> and Cl<sup>-</sup> ions are more which increases the conductance of the solution in contact with metal surface. This accelerates the formation of Fe<sup>2+</sup> ion and helps for rusting.

#### Q.22. Why does conductivity of a solution decrease with dilution?

**Ans.** When electrolytic solution is diluted the concentration of ion in each centimeter cube of the solution decreases. As a result the conductivity of the electrolytic decreases.

#### Q.23. Can you store copper sulphate solution in Zinc pot?

**Ans.** As  $E^0_{Zn^{2+}/Zn(-0.76V)}$  is lower than  $E^0_{Cu^{2+}/Cu(+0.34V)}$ , therefore  $Cu^{2+}$  can oxidise Zn to  $Zn^{2+}$  ions.  $Cu^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Cu(s)$ . Hence  $CuSO_4$  solution can not be stored in zinc pot.

- Q.24. What is emf of the cell when the cell reaction attains equilibrium?
- Ans. Zero.
- Q.25. How is cell constant calculated from conductance values?
- Ans. Cell constant =  $\frac{\text{Specific conductance}}{\text{Observed conductance}}$
- Q.26. What is the overall electrochemical reaction taking place in rusting?
- **Ans.**  $2\text{Fe(s)} + \text{O}_2(g) + 4\text{H}_{(aq)}^+ \rightarrow 2\text{Fe}_{(aq)}^{2+} + 2\text{H}_2\text{O(I)}$
- Q.27. What is the basic reason that a lead storage battery can be recharged?
- **Ans.** PbSO<sub>4</sub> is deposited on the electrodes. So the electrode reaction can be reversed.
- Q.28. Why Zinc reacts with dilute H<sub>2</sub>SO<sub>4</sub> to give gas but copper does not?
- Ans. Zinc has higher oxidation potential than hydrogen where as copper has lower oxidation potential than hydrogen, therefore Zinc reacts with dil H<sub>2</sub>SO<sub>4</sub> to give gas.
- Q.29. Why is it not possible to measure the single electrode potential?
- **Ans.** Oxidation and reduction takes place simultaneously but not alone. It is a relative tendency and can be measured with respect to a reference electrode only.
- Q.30. Which type of metal can be used in cathodic protection of iron against rusting?
- **Ans.** A metal which is more electropositive than iron can be used in ethodic protection, such as Al, Zn and Mg.
- Q.31. Write the names of the electrodes used in a fuel cell?
- **Ans.** Hydrogen and oxygen electrodes.

\*\*\*

## UNIT - III

#### **CHEMICAL KINETICS**

- I. Select the correct answer from the choices given under each bit :
- 1. The rate at which a substance reacts depends upon its
  - (a) atomic mass
  - (b) equivalent mass
  - (c) molecular mass
  - (d) active mass
- 2. The rate of reaction that does not involve gases, is not dependent on
  - (a) pressure
- (b) temperature
- (c) concentration(d) catalyst
- 3. According to collision theory
  - (a) all collisions are sufficiently violent
  - (b) all collisions are responsible for product formation
  - (c) all collisions are effective
  - (d) only a fraction of collisions are effective which have enough energy to form products
- 4. Activation energy of the reaction is
  - (a) the energy released during the reaction
  - (b) the energy evolved when activated complex is formed
  - (c) minimum amount of energy needed to overcome the potential energy barrier
  - (d) the energy needed to form one mole of the product

- 5. Which one of the following is not a first order reaction?
  - (a)  $CH_3COOCH_3 + H_2O \xrightarrow{H^+}$   $CH_3COOH + CH_3OH$
  - (b)  $CH_3COOC_2H_3 + NaOH \rightarrow$  $CH_3COONa + C_2H_5OH$
  - (c)  $2H_2O_2 \rightarrow 2H_2O + O_2$
  - (d)  $2N_2O_5 \rightarrow 4NO_2 + O_2$
- 6. For a reaction 2A+B→C+D, the concentration of B is kept constnt and that of A is tripled, the new rate of reaction will be
  - (a) nine times
- (b) three times
- (c) same
- (d) zero
- 7. For the reaction A → B, the rate of the reaction is quadrupled when the concentration of A is doubled, the rate of the reaction is r = K[A]<sup>n</sup>, the value of 'n' is
  - (a) 1
- (b) zero
- (c) 3
- (d) 2
- 8. A zero order reaction is one
  - (a) in which the reactants do not react
  - (b) in which one of the reactants is in large excess
  - (c) whose rate is uniform and not affected by time
  - (d) whose rate increases with time

- 9. For which of the following, the units of rate and rate constant of the reaction are identical?
  - (a) first order reaction
  - (b) zero order reaction
  - (c) second order reaction
  - (d) fractional order reaction
- 10. 75% of a first order reaction was completed in 32 minutes, when was 50% of the reaction completed?
  - (a) 4 minutes
- (b) 8 minutes
- (c) 24 minutes (d)
- (d) 16 minutes
- 11. In a first order reaction, the concentration of reactant decreases from 1.0 M to 0.25 M in 20 minutes. The value of specific rate is
  - (a) 69.32
- (b) 6.932
- (c) 0.6932
- (d) 0.06932
- 12. If the rate expression for a reaction is  $\frac{dx}{dt} = K[A]^{1/2}[B]^{3/2}$ the overall order of the reaction is
  - (a) 2
- (b)  $\frac{1}{2}$
- (c)  $\frac{3}{2}$
- (d) 1
- 13. Which of the following statements regarding molecularity of the reaction is wrong?
  - (a) it may be either whole number or fractional
  - (b) it is calculated from the reaction mechanism
  - (c) it depends on the rate determining step
  - (d) it is number of molecules of reactants taking part in a single step chemical reaction

- 14. A graph between time (t) and the substance consumed at any time is found to be a straight line passing through the origin. This indicates that the reaction is of
  - (a) Second order
  - (b) First order
  - (c) Zero order
  - (d) Fractional order
- 15. In pseudo-unimolecular reactions
  - (a) one of the reactants is present in large excess
  - (b) both the reactants have same concentration
  - (c) both the reactants are present in low concentration
  - (d) one of the reactants is less reactive
- 16. Which plot can give us the value of activation energy?
  - (a) K versus T
  - (b)  $\frac{1}{K}$  versus T
  - (c) Log K versus  $\frac{1}{T}$
  - (d) C versus T
- 17. The rate of a reaction can be increased in general by all the following factors except
  - (a) by increasing the temperature
  - (b) using a suitable catalyst
  - (c) by increasing the concentration of reactants
  - (d) by an increase in activation energy

## 18. Radioactive disintegration is an example of

- (a) zero order reaction
- (b) first order reaction
- (c) second order reaction
- (d) third order reaction

# 19. The half life period of a first order reaction A → products is 10 minutes. In what period of time is the concentration of A is reduced to 10% of the original concentration?

- (a) 26 minutes (b) 71 minutes
- (c) 33 minutes (d) 90 minutes

## 20. The number of molecules of the reactants taking part in a single step of the reaction tells about

- (a) Molecularity of the reactoin
- (b) Mechanisms of the reaction
- (c) Order of reaction
- (d) All of the above

## 21. For a first order reaction, the half life is independent of

- (a) initial concentration
- (b) cube root of initial concentration
- (c) first power of final concentration
- (d) square root of final concentration

## 22. Activation energy of a chemical reaction can be determined by

- (a) changing the concentration of reactants
- (b) evaluating rate constant at standard temperature
- (c) evaluating rate constants at two different temperatures
- (d) evaluating velocities of reaction at two different temperatues

# 23. For a first order reactives A→ Products, the half life time is 100 seconds. The rate constant of the reaction is

- (a) 6.93 x 10<sup>-3</sup> Sec<sup>-1</sup>
- (b) 6.9 x 10<sup>-2</sup> Sec<sup>-1</sup>
- (c) 6.93 x 10<sup>-4</sup> Sec<sup>-1</sup>
- (d) 6.93 x 10<sup>-1</sup> Sec<sup>-1</sup>

# 24. In a first order reaction, the concentration of the reactant decreases from 0.8 M to 0.4M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is

- (a) 30 minutes
- (b) 15 minutes
- (c) 7.5 minutes
- (d) 60 minutes

## 25. Which of these does not influene the rate of reaction?

- (a) Nature of the reactants
- (b) Concentration of the reactants
- (c) Temperature of the reaction
- (d) Molecularity of the reaction

26. 
$$2N_2O(g) \rightarrow 4NO(g) + O(g)$$

What is the ratio of the rate of decomposition of  $N_2O_5$  to the rate of formation of  $NO_2$ ?

- (a) 1:2
- (b) 2:1
- (c) 1:4
- (d) 4:1

- 27. The time requied for 100% completion of a zero order reaction is
  - (a) ak
- (b)  $\frac{a}{2k}$
- (c)  $\frac{a}{k}$
- (d)  $\frac{2k}{a}$
- 28. A first order reaction has a rate constant 1.15 x 10<sup>-3</sup> s<sup>-1</sup>. How long will 5 g of this reactant take to reduce to 3 g?
  - (a) 444 s
- (b) 402 s
- (c) 442 s
- (d) None of these
- 29. The half-life period of a first order chemical reaction is 6.93 min. The time required for the completion of 99% of the chemical reaction will be (log 2=0.301)
  - (a) 230.3 min.
- (b) 23.03 min.
- (c) 46.06 min.
- (d) 460.6 min.
- 30. By increase in temperature by 10K, the rate of reaction becomes double. How many times the rate of reaction will be if the temperature is increased from 303K to 353 K?
  - (a) 4
- (b) 8
- (c) 16
- (d) 32
- 31. Activation energy of a reaction
  - (a) is independent of temperature
  - (b) increases with temperature
  - (c) gets doubled for every 10 degree rise of temperature
  - (d) decreases with the rise in temperature

- 32. Which one of the following statement for order of reaction is not correct?
  - (a) order can be determined experimentally
  - (b) order of a reaction is equal to sum of the power of concentration terms in differential rate law
  - (c) it is not affected with stoichiometric coefficient of the reactants
  - (d) order can not be fractional
- 33. The minimum energy required to the reacting molecules to undergo reaction is
  - (a) Potential energy
  - (b) Kinetic energy
  - (c) Thermal energy
  - (d) Activation energy
- 34. A reaction involving two different reactants can never be
  - (a) biomolecular reaction
  - (b) second order reaction
  - (c) first order reaction
  - (d) unimolecular reaction
- 35. The inversion of cane sugar is represented by

$$C_{12}H_{22}O_{11}+H_2O \xrightarrow{\ \ \, H^+ \ \ \, } C_6H_{12}O_6+C_6H_{12}O_6 \ .$$

#### It is a reaction of

- (a) second order
- (b) unimolecular
- (c) pseudo unimolecular
- (d) zero order

# 36. For the reaction A → B, the rate law is, rate = K [A]. Which of the following statements is incorrect?

- (a) the reaction follows first order kineties
- (b) the  $\frac{t_1}{2}$  of the reaction depends on initial concentration
- (c) K is constant for the reaction at a constant temperature
- (d) the rate law provides a simple way of predicting the concentration of reactions at any time after the start of the reaction

#### 37. The unit of rate of reaction is:

- (a) time X concentration
- (b) concentration X time
- (c) concentration X time-1
- (d) none of the above

## 38. The rate of a chemical reaction can be expressed in :

- (a) grams per mole
- (b) energy consumed per mole
- (c) volume of gas per unit time
- (d) moles formed per litre of solution

#### 39. The addition of catalyst to a reaction:

- (a) increases the average kinetic energy of the reacting molecules
- (b) deceases the activation energy
- (c) increase the frequency of caollisions of the reacting species
- (d) decreases the enthalpy of reaction

# 40. Which of the following factors affects the rate of heterogeneous reaction only?

- (a) nature of reactants
- (b) temperature of system
- (c) surface area of reactants
- (d) concentration of reactants

# 41. When a catalyst is added to an exothermic reaction, the heat evolved during the reaction?

- (a) increases
- (b) decreases
- (c) remains unchanged
- (d) may increase or decrease

# 42. How does the addition of a catalyst increase the reaction rate of an endothermic reaction?

- (a) It reduces the  $\Lambda H$  of the reaction
- (b) It increases the  $\Lambda H$  of the reaction
- (c) It reduces the required activation energy
- (d) It causes the reaction to become exothermic

## 43. Which of the following reactions ends in finite time?

- (a) 0 order
- (b) 1st order
- (c) 2nd order
- (d) 3rd order

| 44. | The rate constant of a chemical reaction has units L. mol <sup>-1</sup> .s <sup>-1</sup> . Order of the reaction will be: |                                                                |             |                             |     | Answer Keys                            |     |         |     |     |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-----------------------------|-----|----------------------------------------|-----|---------|-----|-----|--|--|--|
|     |                                                                                                                           |                                                                |             |                             |     |                                        | _   | correct |     | _   |  |  |  |
|     | (a) 0                                                                                                                     |                                                                | (b) 1       |                             |     | from the choices given under each bit: |     |         |     |     |  |  |  |
|     | (c)                                                                                                                       | 2                                                              | (d)         | 3                           | 1.  | (d)                                    | 16. | (c)     | 31. | (d) |  |  |  |
| 45. |                                                                                                                           |                                                                |             | tion can be<br>ius equation | 2.  | (a)                                    | 17. | (d)     | 32. | (d) |  |  |  |
|     | -                                                                                                                         | •                                                              |             | his reaction,               | 3.  | (d)                                    | 18. | (b)     | 33. | (d) |  |  |  |
|     | E represents.                                                                                                             |                                                                |             |                             |     | (c)                                    | 19. | (c)     | 34. | (d) |  |  |  |
|     | (a)                                                                                                                       | molecules at a temperautre T.                                  | 5.          | (b)                         | 20. | (a)                                    | 35. | (c)     |     |     |  |  |  |
|     |                                                                                                                           |                                                                | perautre T. | 6.                          | (a) | 21.                                    | (a) | 36.     | (b) |     |  |  |  |
|     | (b)                                                                                                                       |                                                                |             | 7.                          | (d) | 22.                                    | (c) | 37.     | (c) |     |  |  |  |
|     |                                                                                                                           |                                                                |             | 8.                          | (c) | 23.                                    | (a) | 38.     | (c) |     |  |  |  |
|     | (c)                                                                                                                       | the energy                                                     | ahove       | which all the               |     |                                        |     |         | 39. | (b) |  |  |  |
|     |                                                                                                                           | the energy above which all the colliding molecules will react. | 9.          | (b)                         | 24. | (a)                                    | 40. | (c)     |     |     |  |  |  |
|     | (d)                                                                                                                       | · ·                                                            |             | which colliding             | 10. | (d)                                    | 25. | (d)     | 41. | (c) |  |  |  |
|     | (-)                                                                                                                       | molecules v                                                    |             | J                           | 11. | (d)                                    | 26. | (b)     | 42. | (c) |  |  |  |
| 46  | ln /                                                                                                                      | Arrhanius                                                      | nlot        | intarcant is                | 12. | (a)                                    | 27. | (c)     | 43  | (a) |  |  |  |

- (a) E / R
- (b) In A
- (c) In K
- (d)  $\log_{10} a$

- 13. (a) 28. (a) 44. (c)
- 14. (c)
- 29. (c) 45. (c) 15. (a) 46. (b) 30. (d)

#### II. Short Questions

- Q.1. Powdered sugar dissolves faster than crystalline sugar, explain.
- **Ans.** Powdered sugar has greater surface area than crystalline sugar. Sugar molecules come closer to water molecules with greater ease and thus dissolve faster than crystalline sugar.
- Q.2. Hydrogen and oxygen do not react at room temperature. Explain.
- **Ans.** At room temperature, there is no reaction between hydrogen and oxygen as the activation energy of the reaction is very high.
- Q.3. State average rate of reaction.
- **Ans.** The rate measured over a long time interval is called the average rate.

Average rate of reaction =

- Q.4. What is half-life period of a reaction?
- **Ans.** The time taken to react half of the initial concentration or it is the time required for the completion of half of the reaction.
- Q.5. What do you mean by Pseudo unimolecular reaction?
- Ans. Some reactions involve two molecules, but the concentration of one molecule changes with time. But the conc. change of the second molecule has little effect on the reaction. Hence the rate only depends upon the conc. of the molecule which changes with respect to time. This is Pseudo unimolecular reaction.
- Q.6. Write the rate equation for a zero order reaction.

Ans. 
$$K = -\frac{d[A]}{dt} = \frac{a_0 - a}{t}$$

Where A = reactant molecule,  $a_0$  = initial conc. of A and a = conc. at time 't'.

- Q.7. What is specific reaction rate?
- **Ans.** The specific reaction rate of the reaction when the molar conc. of each reactant is unity. The rate K when either conc. of each reactant is 1 Mol. L<sup>-1</sup> or order with respect to each reactant is zero, i.e. reaction is zero order.
- Q.8. What is temperature co-efficient?
- **Ans.** The ratio of rate constants of a reaction at two temperatures differing by 10°C is known as temperature co-efficient.

#### Q.9. What do you mean by threshold energy?

**Ans.** The minimum amount of energy which must be associated with molecules so that their mutual collisions result in chemical reaction is called threshold energy.

#### Q.10. What is rate determining step?

**Ans.** The slowest step is called the rate determining step.

#### Q.11. What is the difference between rate law and law of Mass Action?

**Ans.** Rate law is an experimental law where as law of Mass Action is a theoritical law based on the balanced chemical reaction.

#### Q.12. What is rate of reaction?

**Ans.** The rate of reaction is the change in concentration of any one reactants or products per unit time.

## Q.13. For what type of reactions the rate constant shall have the same units as the rate of reactions?

Ans. Zero order reaction.

#### Q.14. Can a reaction have zero activation energy?

**Ans.** If activation energy (E<sub>2</sub>)=0, then the expression

$$K = A \cdot e^{-Ea/RT} = A \cdot e^{0} = A$$

So the rate constant becomes equal to collision frequency. this means that every collision results into a chemical product, which is not true.

## Q.15. If the rate of formation of oxygen gas is 48 g.mm<sup>-1</sup>. What is the rate of dissapearance of $N_2O_5$ ?

Ans. The rate of reaction is always expressed in terms of mol.  $L^{-1}$ , therefore rate of formation of  $O_2$  gas.

$$O_2 = \frac{48}{32} = 1.5 \text{ mol.mm}^{-1}$$

The rate of dissapearance of

$$N_2O_5, -\frac{1}{2}\frac{\Delta[N_2O_5]}{\Delta t} = \frac{\Delta[O_2]}{\Delta t} = 2\,x\,1.5 = 3.0\,\text{Mol. mm}^{-1}$$

#### Q.16. What is half life of Zero order reaction?

Ans. The integrated equation of zero order reaction is

$$[R] = [R]_0$$
 - Kt Where  $[R]_0$  = initial concentration

[R] = concentration at time 't'

So 
$$t_{1/2} = [R]_{0/2}$$

or 
$$\frac{[R]_0}{2} = [R]_0 - Kt_{1/2}$$

or 
$$Kt_{1/2} = [R]_0 - \frac{[R]_0}{2}$$

or 
$$Kt_{1/2} = \frac{[R]_0}{2}$$

or 
$$t_{1/2} = \frac{[R]_0}{2K}$$

or 
$$t_{1/2} \alpha [R]_0$$

Therefore half life period of zero order reaction is directly proportional to initial concentration.

Q.17. What is the unit of first order rate constant?

Ans. time -1.

Q.18. Give an example where the order and molecularity are equal.

Ans.  $2HI \rightarrow H_{2(q)} + I_{2(q)}$ 

Q.19. Give an example of pseudo first order reaction.

Ans. The hydrolysis of ethyl acetate in acid catalysed reaction.

$$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$$

Rate = 
$$K[CH_3COOC_2H_5][H_2O]^0$$

Q.20. The reaction  $A + B \rightarrow C$  has zero order. What is the rate equation ?

**Ans.** Rate =  $K[A]^0[B]^0$  (where K = rate constant).

Q.21. A reaction is 50% complete in 2 hours and 75% complete in 4 hours. What is the order of the reaction?

**Ans.**  $t_{1/2}$  = 2 hours. And 75% complete in 4 hours i.e. it takes two half lives, this shows  $t_{1/2}$  is independent of initial concentration. Hence the reaction is first ofder.

Q.22. What is the molecularity of the reaction

$$CI \to \frac{1}{2}CI_{2(g)}$$

Ans. One

\*\*\*

## Unit - IV

#### d- AND f - BLOCK ELEMENTS

- I. Select the correct answer from the choices given under each bit :
- 1. d-Block elements form coloured ions because
  - (a) they absorb some energy for d-s transition
  - (b) they absorb some energy for p-d transition
  - (c) they absorb some energy for d-d transition
  - (d) they do not absorb any energy
- 2. The characteristics of transition metals to form the complex ion is
  - (a) having d-subshell unpaired electrons
  - (b) having paired d-subshell electrons
  - (c) providing empty d-orbitals
  - (d) having small charge / size ratio
- 3. Which of the following properties shows that iron is a transition element?
  - (a) it forms double salts
  - (b) it forms stable complexes
  - (c) it decomposes steam at high temp
  - (d) it rusts on moist air
- 4. Which of the following elements involves gradual filling of 5-f level?
  - (a) transition metals
  - (b) lanthanoids
  - (c) coinage metals
  - (d) actinides

- 5. 18 carat gold contains
  - (a) 18% gold
- (b) 24% gold
- (c) 60% gold
- (d) 75% gold
- 6. The general electronic configuration of transition elements is
  - (a)  $ns^2nd^{1-10}$
  - (b)  $(n-1)d^{1-10} ns^{0-2}$
  - (c)  $(n-1)d^{1-10} ns^2$
  - (d)  $ns^{0-2}(n-1)d^{10}$
- 7. Permanent magnets are generally made of alloys of
  - (a) Fe
  - (b) Co
  - (c) Ni
  - (d) Any one of them
- 8. Which of the ions will give colourless aqueous solution?
  - (a) Cu<sup>2+</sup>
- (b) Cu<sup>+</sup>
- (c) Ni<sup>2+</sup>
- (d) Fe<sup>2+</sup>
- 9. Which of the following belongs to the actinide series of elements?
  - (a) Y
- (b) U
- (c) Yb
- (d) Ta
- 10. Which of the following compounds will not give positive chromyl chloride test?
  - (a) HgCl<sub>2</sub>
- (b) ZnCl<sub>2</sub>
- (c) CuCl<sub>2</sub>
- (d)  $C_6HN^+H_3Cl^-$

#### 11. Which metal in the 1st transition series exhibit +1 oxidation state most frequently?

- (a) Zn
- (b) Sc
- (c) Cu
- (d) Cd

#### 12. Which of the following oxides of Mn is amphoteric in nature MnO, MnO, $Mn_2O_3$ , $Mn_2O_7$ ?

- (a) MnO
- (b) MnO<sub>2</sub>
- (c)  $Mn_2O_3$
- (d)  $Mn_2O_7$

#### 13. Which of the following form an alloy?

- (a) Zn + Pb
- (b) Fe + Hg
- (c) Fe + C
- (d) Pt + Hg

#### 14. Which of the following are transition elements Zn, Ag, Cd, Au?

- (a) Zn, Ag
- (b) Zn, Cd
- (c) Ag, Cd
- (d) Ag, Au

#### 15. The formula of chromyl chloride is

- (a) Cr<sub>2</sub>O<sub>5</sub>Cl<sub>2</sub>
- (b)  $Cr_2O_2Cl_2$
- (c)  $CrO_2Cl_2$  (d)  $Cr_2OCl_2$

#### 16. Chromic acid mixture used for cleaning glassware is

- (a)  $K_2Cr_2O_7 + Conc H_2SO_4$
- (b) K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + Conc HCl
- (c)  $Cr_2O_3 + Conc H_2SO_4$
- (d)  $Cr_2O_3 + Conc HNO_3$

#### 17. The compound whose transition metal has +7 oxidation states:

- (a)  $K_2Cr_2O_7$
- (b) KMnO<sub>4</sub>
- (c) K<sub>2</sub>MnO<sub>4</sub>
- (d)  $Cr_2O_3$

#### 18. Cadmium salts are

- (a) green
- (b) blue
- (c) white
- (d) red

#### 19. Which element/s of actinide series has maximum oxidation state

- (a) Am and Cf
- (b) U and Pu
- (c) U and Am
- (d) Np and Pu

#### 20. Which of the following has maximum number of unpaired electrons?

- Fe<sup>2+</sup> (a)
- Mg<sup>2+</sup> (b)
- $V^{3+}$ (c)
- (d) Ti 3+

#### 21. The inner transition series element has electronic configuration:

- (a)  $(n-1)f^{1-14}(n-2)d^{0-1}ns^2$
- (b)  $(n-2)f^{1-14}(n-1)d^{0-9}ns^2$
- (c)  $(n-2)f^{1-14}nd^{0-9}(n+1)s^2$
- (d)  $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$

#### The lanthanide contraction is **22**. responsible for the fact that

- Regular decrease in atomic and ionic radii with increasing number in lanthanoid series.
- Regular increase in atomic and (b) ionic radii with increasing number in lanthanoid series.
- Both the d-block and f-block (c) elements have decrease in atomic size.
- (d) f-block elements having same oxidation state with increasing atomic number.

#### 23. Which of the following elements belongs to lanthanide series?

- (a) Nobelium
- (b) Cerium
- (c) Thorium
- (d) Tellurium

## 24. Lanthanide contraction is due to increase in

- (a) shielding by 4f electrons
- (b) atomic number
- (c) effective nuclear charge
- (d) size of 4-f orbital

## 25. The highest magnetic moment is in the transition metal having

- (a)  $3d^2$
- (b)  $3d^7$
- (c)  $3d^5$
- (d) 3d<sup>9</sup>

#### 26. Lanthanides are

- (a) 14 elements in the sixth period of atomic No. 90 to 103 that are filling 4f sub shell.
- (b) 14 elements in the seventh period of atomic No. 90 to 103 that are filling 5f sub shell.
- (c) 14 elements in the sixth period of atomic No. 58 to 71 that are filling 4f sub shell.
- (d) 14 elements in the seventh period of atomic No. 58 to 71 that are filling 4f sub shell.

## 27. Lanthanides and actinides resemble in :

- (a) electronic configuration
- (b) oxidation state
- (c) ionization energy
- (d) formation of complexes

## 28. Which of the following factor may be regarded as the main cause of lanthanide contraction?

- (a) Poor shielding of one of the 4-f electrons by another in the sub shell.
- (b) Effective shielding of one of the 4-f electrons by another in the sub shell.
- (c) Poorer shielding of 5-d electrons by 4-f electrons.
- (d) Greater shielding of 5-d electrons by 4-f electrons.

# 29. The main reason for large number of oxidation states exhibited by the actinoids than the corresponding lanthanoids is:

- (a) lesser energy difference between 5f and 6d orbitals than between 4f and 5d orbitals.
- (b) more energy difference between 5f and 6d orbitals than between 4f and 5d orbitals.
- (c) greater reactive nature of the actinoids than the lanthanoids.
- (d) larger atomic size of the actinoids than the lanthanoids.

## 30. Which of the following is not an actinoid?

- (a) Curium
- (b) Californium
- (c) Thorium
- (d) Terbium

## 31. The transition metal exists in its highest oxidation state. It is expected to behave as:

- (a) a chelating agent
- (b) a reducing agent
- (c) an oxidising agent
- (d) a central metal in a coordination compound

| 32. | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>          | reacts | with | NH <sub>4</sub> CI | in |
|-----|--------------------------------------------------------|--------|------|--------------------|----|
|     | presence of ConcH <sub>2</sub> SO <sub>4</sub> , gives |        |      |                    |    |

- (a) Chromyl chlorate with green vapour
- (b) Chromous chloride with white vapour
- (c) Chromous chloride with blue vapour
- (d) Chromyl chloride with red vapour
- 33.  $\operatorname{Cr_2O_7^{2-}} \xrightarrow{H^+} \operatorname{Cr^{3+}}$  equivalent weight of  $\operatorname{Cr_2O_7^{2-}}$  is
  - (a) Mol. wt/6
- (b) Mol. wt/3
- (c) Mol. wt/4
- (d) Mol. wt/1

### 34. Least paramagnetic property is shown by

- (a) Fe
- (b) Ni
- (c) Cu
- (d) Mn

## 35. One mole of acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> on reaction with excess of KI will liberate moles of I<sub>2</sub>

- (a) 6
- (b) 7
- (c) 2
- (d) 3

# 36. KMnO<sub>4</sub> is a strong oxidising agent in acid medium. To provide acid medium H<sub>2</sub>SO<sub>4</sub> is used instead of HCl because

- (a) H<sub>2</sub>SO<sub>4</sub> is a stronger acid than HCI
- (b) HCl is oxidized by KMnO<sub>4</sub> to Cl<sub>2</sub>
- (c)  $H_2SO_4$  is a dibasic acid
- (d) Rate is faster in presence of H<sub>2</sub>SO<sub>4</sub>

### 37. K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> can be converted into potassium chromate (K<sub>2</sub>CrO<sub>4</sub>) using

- (a)  $H_2SO_4$
- (b) KOH
- (c) KCI
- (d) KNO<sub>2</sub>

### 38. The purple colour of KMnO<sub>4</sub> is due to the

- (a) charge transfer from O to Mn
- (b) charge transfer from Mn to O
- (c) transition of d d
- (d) transition of p d

#### 39. +3 oxidation state is most common in

- (a) Fe (26)
- (b) Ni (28)
- (c) Zn (30)
- (d) Cu (29)

### 40. Which of the following belong to 3d series?

- (a) copper
- (d) gold
- (c) silver
- (d) platinum

## 41. Transition elements have greater tendency to form complexes because

- (a) they have large size
- (b) they have vacant d orbitals
- (c) they have two electrons in their outermost shells
- (d) none of the above

### 42. The colour of transition metal ions is due to

- (a) d d transition
- (b) change in geometry
- (c) small in size
- (d) none of these

### 43. $K_4$ [Fe(CN)<sub>6</sub>] is used for the detection of

- (a) Cu<sup>2+</sup>
- (b) Cu<sup>+</sup>
- (c) Fe<sup>3+</sup>
- (d) Ni<sup>2+</sup>

- 44. When  $H_2O_2$  is added to acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>2</sub>, a blue colour is produced due to formation of
  - (a) CrO<sub>2</sub>
- (b) CrO<sub>5</sub>
- (c)  $Cr_2O_3$  (d)  $CrO_4^{2-}$
- 45. Which of the following is coloured Cu<sup>+</sup>, VO<sup>2+</sup>, Sc<sup>3+</sup>, Ni<sup>2+</sup>?
  - (a) Cu⁺
- (b) VO<sup>2+</sup>
- (c)  $Sc^{3+}$
- (d) Ni<sup>2+</sup>
- 46. Which of the following lanthanoids have one electron in 5d subshell?
  - (a) Cerium & Europium
  - (b) Neodymium & Samarium
  - (c) Gadolinium & Lutetium
  - (d) Lanthanum & Yetterbium
- 47. Which of the following exhibit oxidation states upto +7?
  - (a) uranium
- (b) plutorium
- (c) callifornium (d)
- curium
- 48. Which of the following compound has oxidation state +6?
  - (a) KMnO
- (b)  $K_2MnO_4$
- (c)  $K_2Cr_2O_7$  (d)  $Cr_2O_3$
- 49. The most common oxidation state of lanthanoids is
  - (a) + 4
- (b) +6
- (c) +2
- (d) + 3
- 50. Which of the following metals is used in incandascent lamps?
  - (a) Chromium
  - (b) Tungsten
  - Zirconium (c)
  - (d) Molybodenum

- 51. The disproportionate reaction combination of the following is
  - $3MnO_4^{2-} + 4H^+ \rightarrow$ (i)

$$2\mathsf{MnO_4}^- + \mathsf{MnO_2} + 2\mathsf{H_2}\mathsf{O}$$

- $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow$ (ii)  $5MnO_2 + 4H^+$
- (iii)  $2Cu^+ \rightarrow Cu^{2+} + Cu$
- (iv)  $2KMnO_{4} \rightarrow$  $K_2MnO_4 + MnO_2 + O_2$
- (b) (ii) and (iii) (a) (i) and (ii)
- (i) and (iii) (d) (iii) and (iv) (c)
- **52**. Which ion gives coloured solution?
  - (a) Cu⁺
- $Zn^{2+}$ (b)
- (c) Ag⁺
- (d) Fe<sup>2+</sup>
- 53. The maximum oxidation state of actinide is
  - (a) +7
- (b) +6
- (c) +5
- (d) + 3
- 54. Ni<sup>2+</sup> gives coloured salts due to
  - (a) complete filled d-orbitals
  - (b) incompletely filled d-orbitals
  - (c) presence of p-orbitals
  - presence of f-orbitals (d)
- Manganese exhibits maximum **55**. oxidation state in:
  - (a) MnO<sub>2</sub>
- (b)  $Mn_3O_4$
- $KMnO_{\lambda}$  (d)  $K_{\alpha}MnO_{\lambda}$
- Which chromium compound is **56**. widely used for tanning of leather?
  - (a)  $K_2SO_4 \cdot Cr_2(SO_4)_3 \cdot 24H_2O$
  - (b) CrCl<sub>3</sub>
  - (c) CrO<sub>2</sub>Cl<sub>2</sub>
  - (d)  $Cr_2O_3$

- 57. Ammonium dichromate is used in fire works. The green coloured powder bloom in the air is:
  - CrO<sub>3</sub>
- $CrO(O_2)$ (c)
- (d)  $Cr_2O_3$
- On heating ammonium dichromate, the gas evolved is:
  - (a) Nitrogen
- (b) Nitrous oxide
- (c) Oxygen
- (d) Ammonia
- Which compound does not dissolve in hot dillute HNO<sub>3</sub>?
  - (a) CdS
- (b) CuS
- (c) CuCl<sub>2</sub>
- (d) HgS
- 60. Which of the following oxides of Chromium is basic in nature?
  - (a) CrO
- (b)  $Cr_2C_3$
- (c) CrO<sub>3</sub>
- (d)  $CrO_{5}$

- The outer electronic configuration 61. of Chromium is:
  - (a)  $4s^1 3d^5$
- $4s^2 3d^4$ (b)
- $4s^0 3d^6$ (c)
- (d)  $4s^2 3d^5$
- 62. The electronic configuration of a transition element X in +2 oxidation state is [Ar]3d10. The atomic number of the element is:
  - (a) 27
- (b) 28
- (c) 29
- (d) 30
- 63. KMnO<sub>4</sub> acts as an oxidising agent in acidic medium. The number of moles of KMnO<sub>4</sub> required to oxidise one moles of sulphide ion in acidic medium is:
  - (a)

- 64. In the first transition series, the element with highest melting point is:
  - (a) Mn
- (b) Fe
- (c) Cr
- (d) Cu

### ANSWER KEYS

- I. Select the correct answer from the choices given under each bit :
- 1. (a) 2.
- 12. (b)
- 23. (b)
- 34. (c)
- 45. (d)
- 56. (a)

- (c)
- 13. (c)
- 24. (c)
- 35. (d)
- 46. (c)
- 57. (d)

- 3. (b)
- 14. (d)
- 25. (c)
- 36. (b)
- 47. (b)
- 58. (a)

- 4. (d)
- 15. (c)
- 26. (c)
- 37. (b)
- 48. (c)
- 59. (d)

- 5. (d)
- 16. (a)
- 27. (b)
- 38. (a)
- 49. (d)

- 6. (b)
- 17. (b)
- 28. (a)
- 39. (a)
- 50. (b)
- 60. (a) 61. (a)

- 7. (d)
- 18. (c)
- 29. (a)
- 40. (a)
- 51. (c)
- 62. (d)

- 8. (b)
- 19. (d)
- 30. (d) 31. (c)
- 41. (b)
- 52. (d)
- 63. (a) 64. (c)

- 9. (b) 10. (a)
- 20. (a) 21. (d)
- 32. (d)
- 42. (a) 43. (c)
- 53. (a)

- 11. (c)
  - 22. (a)
- 33. (a)
- 44. (b)
- 54. (b) 55. (c)
- // 36 //

#### II. Short Questions

- 1. Cu, Ag, Au have completely filled d-orbitals, why are they considered as transition metals?
- **Ans.** The cations have only partially filled d-orbitals, show the transition properties.
- 2. Which of 3d transition series has maximum oxidation state & why?
- **Ans.** Manganese (Atomic number 25) shows maximum number of oxidation states. It has maximum number of electrons to lose. All 3d subshells are unpaired and s-subshell is doubly occupied. So Mn shows oxidation state from + 2 to + 7 (+ 2, + 3, + 4, + 5, + 6 and + 7).
- 3. To what extent do the electronic configuration decide the stability of oxidation states in the 1st transition series elements?
- **Ans.** For the 1st transition series the electronic configuration of 3d<sup>1-10</sup>4s<sup>2</sup>, but Mn has maximum oxidation state from +2 to +7 and Mn<sup>2+</sup> is most stable having half filled 3d<sup>5</sup> configuration. Similarly Sc<sup>3+</sup> and Zn<sup>2+</sup> are more stable having 3d<sup>0</sup> and 3d<sup>10</sup> configurations respectively.
- 4. What are transition elements? Give example.
- **Ans.** The 'd' block elements present between 's' block and 'p' block elements are called transition elements.

1st transition series from <sup>21</sup>Sc to <sup>30</sup>Zn.

2nd transition series from <sup>39</sup>Y to <sup>48</sup>Cd etc.

- 5. Write electronic configuration of Cu<sup>2+</sup> and Cr<sup>3+</sup> ions.
- Ans. The electronic configuration of

$$Cu^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$$

$$Cr^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$$

6. Name the d-block elements which do not have partially filled d-orbitals in their atoms or in their simple ions.

**Ans.** 
$$Sc^{3+} = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$$

$$Ti^{4+} = 1s^2 2s^2 2p^6 3s^2 3p^6$$

both having no partially filled 'd' orbitals.

- 7. Why does a transition metal form alloys with other transition metals easily?
- **Ans.** The 'd' block transition metals have almost similar atomic sizes. Therefore, these elements can mutually substitute their position in their crystal lattices. In this way many alloys are possible between transition metals.

#### 8. Why is CuSO<sub>4</sub> 5H<sub>2</sub>O coloured?

**Ans.** In presence of H<sub>2</sub>O molecule, the 'd' orbital of Cu<sup>2+</sup> split into two sets having slightly different energies. Hence, d-d transitions become possible in hydrated CuSO<sub>4</sub> and acquires blue colour due to absorption of visible light.

#### 9. Why is CuCl is colourless but CuCl<sub>2</sub> is blue?

**Ans.** In CuCl, Cu<sup>+</sup> has fully filled subshell, hence it can not give d-d transition. Therefore, it is colourless. But CuCl<sub>2</sub>, the Cu<sup>2+</sup> ion has d<sup>9</sup> (half filled) orbitals. It can give d-d transition, hence it is coloured.

#### 10. Why is E<sup>0</sup> values of Mn<sup>3+</sup>/Mn<sup>2+</sup> couple much more positive than Cr<sup>3+</sup>/Cr<sup>2+</sup>?

**Ans.** The high reduction potential of Mn<sup>3+</sup>/Mn<sup>2+</sup> couple is due to the reason that Mn<sup>3+</sup> (3d<sup>4</sup>) by accepting an electron acquires very stable 3d<sup>5</sup> electron configuration. But Cr<sup>3+</sup>/Cr<sup>2+</sup> the reduction potential is small.

#### 11. Why 2nd and 3rd transition series elements show similar size?

**Ans.** In 3rd transition series after lanthanum, there is lanthanide contraction. Due to this contraction the size of any atom of the third transition series is almost the same as that of the element lying just above in the second transition series. This leads to similarity in their properties.

#### 12. Why is the separation of lanthanide elements difficult?

**Ans.** Due to lanthanide contraction, the change in atomic or ionic radii of these elements is very small. Hence their chemical properties are similar. Thus, their separation is difficult.

#### 13. Why are lanthanide paramagnetic in nature?

**Ans.** All lanthanides except La<sup>3+</sup> and Lu<sup>3+</sup> contain unpaired electrons and therefore paramagnetic in nature.

#### 14. On what ground Sc (At. No. = 21) is a transition element, but Zn (At. No. 30) is not?

**Ans.** Sc (At. No. 21) has incomplete 3d orbital (3d¹), but Zn(At. No. 30) has complete 3d orbital (3d¹0), Hence Zn is not considered as transition element.

#### 15. Why mercury (I) ion exist as Hg<sub>2</sub><sup>2+</sup> ion while copper (I) exist as Cu<sup>+</sup>?

**Ans.** The electronic configuration of Hg<sup>+</sup> is [Xe] 4f<sup>14</sup>5d<sup>10</sup>, 6s<sup>1</sup>, thus has one electron in 6s orbital, which shows paramagnetic. But it shows diamagnetic, so the single filled Hg<sup>+</sup> should overlap with another Hg<sup>+</sup> single filled s-orbital forming Hg-Hg covalent bond. Thus shows dimeric species. Where as in Cu<sup>+</sup> it is filled 3d<sup>10</sup> orbital and no unpaired electrons to form dimeric species, so it exists as Cu<sup>+</sup> ion.

16. Explain copper (I) is diamagnetic where as Copper (II) is paramagnetic.

**Ans.** Cu<sup>+</sup> has complete 3d<sup>10</sup> electrons (no unpaired shells), so diamagnetic but Cu<sup>++</sup> has 3d<sup>9</sup> (having unpaired d-orbital) shows paramagnetic.

17. What is lanthanoid contraction?

**Ans.** The regular decrease (contraction) in the atomic and ionic radii with increasing atomic number is known as lanthanide contraction.

18. Why transition metals show coloured compounds?

Ans. Due to presence of unpaired 'd' orbitals.

19. What happens when

(a)  $K_2Cr_2O_7$  is heated

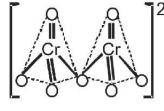
(b) KMnO<sub>4</sub> is heated

(c) KI solution is treated with alkaline KMnO<sub>4</sub> solution

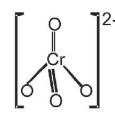
(d) SO<sub>2</sub> is passed through acidified solution of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

**Ans.** (a)  $K_2Cr_2O_7 \xrightarrow{\Delta} 4K_2CrO_4 + 2Cr_2O_3 + 3O_2$ 

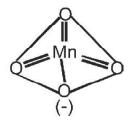
(b)  $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$ 


(c)  $2KMnO_4 + H_2O + KI \leftarrow 2MnO_2 + 2KOH + KIO_3$ 

(d)  $K_2Cr_2O_7 + H_2SO_4 + 3SO_2 - K_2SO_4 + Cr_2(SO_4)_3 + 3H_2O_4$ 


20. Describe the structure of

(a) dichromate ion (b) chromate ion (c) manganate ion


Ans.



dichromate



Chromate



Permanganate

21. In the titration of FeSO<sub>4</sub> with KMnO<sub>4</sub> in the acidic medium, why is dil H<sub>2</sub>SO<sub>4</sub> used instead of dil HCl?

**Ans.** In titration of  $FeSO_4$  with  $KMnO_4$  if HCl (acid) is added, the oxygen produced from  $KMnO_4$  + HCl is partly used up to oxidise HCl to chlorine.

22. Why Zn<sup>2+</sup> salts are white Cu<sup>2+</sup> salts are blue?

**Ans.** Zn<sup>2+</sup> salts having 3d<sup>10</sup> filled orbital shows white, but Cu<sup>2+</sup> having 3d<sup>9</sup> (unpaired) electrons shows colour.

- 23. Explain the following observations.
  - (a) transition metals form cloloured compounds.
  - (b) transition metals exhibit variable oxidation state.
- **Ans.** (a) Transition metals form coloured compounds due to unpaired 'd' orbitals.
  - (b) The energies of (n-1)d and ns orbitals have very close hence both can participate to show variable valence.
- 24. What is the basic difference between electronic configuration of the transition and inner transition elements?
- **Ans.** Electronic configuration of transition series is  $(n-1)d^{1-10} ns^{0-2}$  and electronic configuration of inner transition series is  $(n-2) f^{1-14} (n-1)d^{0-1} ns^2$ .
- 25. Why Zn, Cd and Hg are soft and have low m.p.
- **Ans.** As there are no unpaired electrons in Zn, Cd, Hg, they are soft and low m.p.
- 26. What are the differences between lanthanide contraction and actinide contraction?
- **Ans.** Lanthanide contraction refers to the gradual decrease in size of the lanthanoids and their trivalent ions where as actinoids refers to the gradual decrease in the size of the actinoids or their ions. They differ in actinoid series, the contraction is greater from element to element due to poor shielding by 5f electrons than by 4f electrons.
- 27. What is disproportionation of an oxidation state? Give an example.
- **Ans.** Disproportion of an oxidation state means the oxidation state of an element either increase or decrease in the products e.g.

$$VI$$
  $VII$   $IV$   $3MnO_4^{2-} + 4H^+ - - - - - - MnO_4^- + MnO_2 + 2H_2O$ 

- 28. Silver has completely filled orbitals (4d¹º) in its ground state. How can it is placed in transition elements?
- **Ans.** Silver has Ag<sup>+</sup> and Ag<sup>2+</sup> states. In +2 oxidation state Ag has 3d<sup>9</sup> i.e. incomplete 'd' orbitals. Hence, placed in transition elements.
- 29. What are characteristics of the transition elements and why are they called transition elements?
- Ans. Characteristics of transition elements:
  - (i) the atomic radii of the elements are in between s and p block elements

- (ii) they have high ionization energy, more electro positive and show variable oxidation state
- (iii) most elements form coloured compounds and are paramagnetic
- (iv) they have tendency to form complexes

The elements which lie between s & p block elements are called transition elements.

- 30. Why is +2 oxidation state of manganese quite stable while the same is not true for iron ? (Mn = 25, Fe = 26)
- **Ans.** The electronic configuration of Mn<sup>2+</sup> is 3d<sup>5</sup> which has stable half filled 'd' shell. So it is difficult to form Mn<sup>3+</sup>. Where as Fe<sup>2+</sup> has 3d<sup>6</sup> configuration, hence one more electron can be taken out to for Fe<sup>3+</sup> having stable 3d<sup>5</sup> configuration. Hence Fe<sup>3+</sup> is more stable than Fe<sup>2+</sup>.
- 31. Why is separation of lanthanide elements difficult?
- **Ans.** Due to lanthanide contraction, the change in atomic and ionic radii is very small and the chemical properties are similar. So separation is difficult.
- 32. Why the properties of Illrd transition series are very similar to second transition series?
- Ans. See question no. 11.
- 33. Why Sc3+ salts are diamagnetic?
- **Ans.**  $Sc^{3+}$ :  $1s^2 2s^2 2p^6 3s^2 3p^6$

So all the electronic shells are paired. Hence Sc<sup>3+</sup> salts are diamagnetic.

- 34. Why +IV oxidation state is more state for Pt than Ni where as +II state is more stable for Ni than Pt?
- Ans. The sum of the first four ionisatoin enthalpies is less for Pt than Ni where as sum of first two ionisaton enthalpies is less for Ni than Pt. Hence Pt (IV) is more stable than Ni (IV) where as Ni (II) is more stable than Pt (II).
- 35. Why d<sup>4</sup> species of Cr<sup>2+</sup> is strongly reducing while manganse (III) is strongly oxidising?
- Ans. For Chromium +III state is more stable as compared to +II state. Therefore, Cr<sup>2+</sup> readily changes into Cr<sup>3+</sup> and behaves as a strong reducing agent. On the otherhand for manganese, +II state is more stable than +III state. Hence, Mn<sup>3+</sup> readily changes inot Mn<sup>2+</sup> (3d<sup>s</sup>) by gaining an electron and behaves as strong oxidising agent.

- 36. Why Cu<sup>+</sup> ion is not stable in aqueous solution?
- **Ans.** Cu<sup>+</sup> in aqueous solution undergoes disproportionation.

$$2Cu^{+}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + Cu(s)$$

The E<sup>0</sup> value for this is favourable.

- 37. In what way is the electronic configuration of the transition elements different from that of the non-transition elements?
- Ans. Transition elements have partially filled 'd' subshell belonging to penultimate energy level whereas non-transition elements do not have any partially filled d-subshell. In non-transition elements, the last electron enters the s or p subsell whereas in transition elements the last electron enters the 'd' subshell of penultimate energy level.
- 38. Which metal in the first transition series exhibits +1 oxidation state most fequently and why?
- **Ans.** Copper exhibits +1 oxidation state most frequently in fist transition series. Because Cu(I) has stable electronic configuration.Cu (I) . [Ar] 3d<sup>10</sup>.
- 39. there is grater range of oxidation states among the actinoids than that in Lanthanoids. Why?
- **Ans.** Lanthonoids mainly exhibit oxidation states of +3 (besides +2 and +4). Actinoids also exhibit oxidation states of +3 but they also show higher oxidation states from +4 to +7. This is due to nearly equal energis of 5f, 6d and 7s sub shells.
- 40. Can Lanthonum (Z=57) exhibit +4 oxidation state ? Explain.
- **Ans.** Lanthanum has electronic configuration

La<sup>3+</sup> has stable electronic configuration of Xenon. In order to give +4 oxidation state, the stable electronic configuration of La<sup>3+</sup> would have to be distrubed and hence La<sup>4+</sup> does not exist.

- 41. What is the common oxidation state of Cu, Ag and Au.
- **Ans.** All these three metals show a common oxidation state +1.
- 42. Why do transition metals show similarities along the horizontal period.
- **Ans.** All the metals of transition elements contain incompletely filled 'd' subshell where as the outer shell electronic configuration remains the same.

\*\*\*

#### Unit - V

#### **COORDINATION COMPOUNDS**

- I. Select the correct answer from the choices given under each bit :
- 1. Among the following which is not a complex compound.
  - (a)  $K_2SO_4$ .  $AI_2(SO_4)_3$  24 $H_2O$
  - (b)  $K_4[Fe(CN)_6]$
  - (c)  $[Co(NH_3)_6]CI_3$
  - (d)  $[Ni(CO)_{4}]$
- 2. Secondary valency of Pt in [Pt(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>4</sub> is
  - (a) 4
- (b) 6
- (c) 0
- (d) 2
- 3. Among the following which has highest paramagnetism property?
  - (a)  $[Cr(H_2O)_6]^{3+}$  (b)  $[Fe(H_2O)_6]^{2+}$
  - (c)  $[Cu(H_2O)_e]^{2+}$  (d)  $[Zn(H_2O)_e]^{2+}$
- 2 moles of AgCI is precipitated per 4. mole of the compound NiCl, . 6H,O. Total number of ions produced are:
  - (a) 2
- (b)
- (c) 4
- (d) 0
- EDTA⁴ is a: 5.
  - unidented ligand (a)
  - (b) didented ligand
  - hexadented ligand (c)
  - tridented ligand (d)

- The oxidation number of Fe in 6.  $K_3[Fe(C_2O_4)_3]$  is
  - (a) 0
- (b) +3
- (c) +4
- (d) +2
- 7. [Cr(NH<sub>3</sub>)<sub>6</sub>][Co(CN)<sub>6</sub>] show
  - (a) Co-ordination isomerism
  - Ionization isomerism (b)
  - Linkage isomerism (c)
  - (d) Hydrate isomerism
- In [Ni(CO),] nickel has 8.
  - (a) sp<sup>3</sup> hybridization
  - (b) dsp<sup>2</sup>hybridization
  - (c) sp<sup>2</sup>hybridization
  - (d) sp<sup>3</sup>d hybridization
- 9. Among the following which is a outer orbital complex?

  - (a)  $[Co F_6]^{3-}$  (b)  $[Co(NH_3)_6]^{3+}$
  - (c)  $[Fe(CN)_6]^4$  (d)  $[Fe(CN)_6]^3$
- NiCl<sub>2</sub> 6H<sub>2</sub>O give 2 moles of AgCl 10. precipitated per mole of the compound with excess AgNO<sub>3</sub>. The secondary valency of nickel is
  - (a) 2
- (b) 4
- (c) 6
- (d) 8

- Tetraammineaquachlorido cobalt (III) chloride is
  - (a)  $[Co(NH_3)_A H_2O.Cl] Cl_3$
  - (b)  $[Co(NH_3)_A Cl_2]Cl$
  - (c)  $[Co(NH_3)_3 Cl_3]$
  - (d)  $[Co(NH_3)_4 (H_2O)_2] Cl_3$
- 12. The number of ions produced from the complex [Co(NH<sub>3</sub>)<sub>6</sub>] Cl<sub>2</sub> in solution is:
  - (a) 2
- (b) 3
- (c) 4
- (d) 6
- 13. The oxidation number of cobalt in  $[Co(NH_3)_6]CI_3$  is
  - (a) + 1
- (b) +2
- (c) +3
- (d) 0
- 14. Among the following, the most stable complex is
  - (a)  $[Fe(H_2O)_a]^{3+}$  (b)  $[Fe(CN)_a]^{3-}$
  - (c)  $[Fe(C_2O_4)_3]^3$  (d)  $[Fe Cl_8]^{3-}$
- 15. Which one of the following species, the transition metal ion has d<sup>3</sup> electronic configuration?
  - (a)  $[Cr(NH_3)_{\alpha}]^{3+}$  (b)  $[CoF_{\alpha}]^{3-}$
- - (c)  $[Fe(CN)_6]^{3-}$  (d)  $[Ni(H_2O)_6]^{2+}$
- 16. Which one of the following species has a square planner structure?
  - (a) [Pt  $(NH_3)_2CI_2$ ]
  - (b)  $[BeF_{4}]^{2-}$
  - (c)  $[Hg(NH_3)_2]Cl_2$
  - (d)  $SF_6$

- 17. The maximum co-ordination number of EDTA is
  - (a) 2
- (b) 4
- (c) 6
- (d) 3
- 18. The I U P A C name of sodium nitro prusside is
  - Sodium nitroferricyanide (a)
  - (b) Sodium nitroferrocyanide
  - Sodium pentacyanonitrosyl ferrate (c) (III)
  - (d) None of these
- 19. The oxidation state of Fe in brown ring complex  $[Fe(H_2O)_5NO]SO_4$  is
  - (a) +1
- (b) +2
- (c) +3
- (d) +4
- 20. Which compound will yield Fe3+ ion in solution?
  - (a)  $FeSO_4(NH_4)_2SO_4 \cdot 6H_2O$
  - (b)  $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$
  - (c)  $[Fe(CN)_{6}]^{4}$
  - (d)  $[Fe(CN)_{6}]^{3}$
- 21. The chemical formula of nitro pentaminecobalt (III) chloride.
  - (a)  $[Co(NH_3)_5NO_2]Cl_2$
  - (b)  $[Co(NH_3)_4(NO_2)_2]Cl_2$
  - (c)  $[Co(NH_3)_5(NO_2)]CI$
  - (d)  $[Co(NH_2)_{\epsilon}(NO_2)]CI_2$

- 22. In which of the following complex the nickel is in highest oxidation state?
  - (a) Ni(CO<sub>4</sub>)
  - (b)  $K_2[NiF_6]$
  - (c)  $[Ni(NH_3)_6](BF_4)_2$
  - (d)  $K_4[Ni(CN)_6]$
- 23. In which of the following compound, the metal is in the lowest oxidation state?
  - (a)  $[Co(NH_3)_5 Br_2] SO_4$
  - (b)  $\operatorname{Fe_3}\left[\operatorname{Fe}(\operatorname{CN})_6\right]_2$
  - (c)  $[Mn_2(CO)_{10}]$
  - (d)  $K[PtCl_3(C_2H_4)]$
- 24. Which of the following observation / statement is correct?
  - (a) Anhydrous CuSO₄ becomes blue in aqueous medium due to the complex formation.
  - (b) Ni (CN)<sub>2</sub> dissolves in KCN giving an orange-red solution.
  - (c) Fe(OH)<sub>3</sub> can be precipitated by adding NH<sub>4</sub>OH to K<sub>3</sub>[Fe(CN)<sub>6</sub>].
  - (d) None of the above.
- 25. The correct structure of Fe(CO)<sub>5</sub> is
  - (a) Octahedral
  - (b) Tetrahedral
  - (c) Square pyramidal
  - (d) Trigonal bipyramidal
- 26. The IUPAC name of  $Na_3[Co(NO_2)_6]$  is
  - (a) Sodium cobaltinitrite
  - (b) Sodium hexanitritocobaltate (III)
  - (c) Sodium hexanitrocobalt (III)
  - (d) Sodium hexanitritocobaltate (II)

- 27. Which of the following species represents the example of dsp<sup>2</sup> hybridization?
  - (a)  $[Fe(CN)_6]^{3-}$  (b)  $[Ni(CN)_4]^{2-}$
  - (c)  $[Ag(CN)_2]^{-1}$  (d)  $[Co(CN)_6]^{3-1}$
- 28. Copper Sulphate dissolves in excess of KCN to give
  - (a)  $[Cu(CN)_4]^{2-}$  (b)  $Cu(CN)_2$
  - (c) CuCN (d)  $[Cu(CN)_4]^{3-}$
- 29. When excess ammonia is added to CuSO<sub>4</sub> solution, the deep blue complex obtained is :
  - (a) Tetrahedral and paramagnetic
  - (b) Tetrahedral and di-magnetic
  - (c) Square plannar and di-magnetic
  - (d) Square planner and paramagnetic
- 30. The dark blue colour solution formed when excess of ammonia is added to a solution of copper (II) sulphate is due to the presence of the ion
  - (a)  $[Cu(OH)_4(H_2O)_2]^{2-}$
  - (b)  $[Cu(NH_3)_2(H_2O)_4]^{4+}$
  - (c)  $[Cu(NH_3)_2(H_2O)_4]^{2+}$
  - (d)  $[Cu(NH_3)_4(H_2O)_4]^{2+}$
- 31. The ligand: NO is named as
  - (a) Nitrosonium (b) Nitronium
  - (c) Nitrosyl (d) Nitro

## 32. Prussian blue is obtained by mixing together aqueous solution of Fe<sup>3+</sup> salt with

- (a) Ferricyanide
- (b) Ferrocyanide
- (c) Hydrogen cyanide
- (d) Sodium cyanide

# 33. According to crystal field theory, five'd' orbitals in an octahedral field splitto give

- (a) two orbitals with lower energy and three orbitals with higher energy
- (b) three orbitals with lower energy and two orbitals with higher energy
- (c) one orbitals with lower energy and four orbitals with higher energy
- (d) four orbitals with lower energy and one orbitals with higher energy

### 34. The central metal in a complex behaves as

- (a) Lewis acid
- (b) Lewis base
- (c) Neutral compound
- (d) None

### 35. A group of atoms can act as ligand when

- (a) it is a small molecule
- (b) it is a negativity charged ion
- (c) it has lone pair of electrons
- (d) it is positively charged ion

### 36. The group present outside the co-ordination sphere in a complex is

- (a) ionic
- (b) covalent
- (c) co-ordinate (d)
  - d) None

#### 37. An ambidentate ligand is one which

- (a) is linked to the metal through two donor atom
- (b) has two donor atoms but only one of them has capacity to form a co-ordinate bond
- (c) has two donor atoms but either of two can form a co-ordinate bond
- (d) form chelate rings

### 38. The formula of tetra ammine nickel (II) hexa cyanoferrate (III) is

- (a)  $[Ni (NH_3)_6]_4 [Fe(CN)_6]$
- (b)  $[Ni (NH_3)_4]_3 (Fe(CN)_6]_4$
- (c)  $[Ni(NH_3)_4]_4 [Fe(CN)_6]_2$
- (d)  $[Ni (NH_3)_4]_3 [Fe(CN)_6]_2$

### 39. Chlorophyll is a co-ordination compound having metal atom of

- (a) Ca
- (b) Mg
- (c) Na
- (d) K

### 40. Which is not the co-ordination compound among the following

- (a) Potassium Ferricyanide
- (b) Potassim Ferrocyanide
- (c) Ferrous ammonium sulphate
- (d) Tetraammine copper sulphate

### 41. The correct name of $[Cr (NH_3)_6] Cl_3$ is:

- (a) hexamminechromium (III) Chlorids
- (b) hexamninechromium (II) chloride
- (c) hexammoniachromium (III) chlorid
- (d) chromium (III) hexammine chloride

### 42. Which reagent can be used to identify nickel ion?

- (a) Resorcinol
- (b) Diphenyl benzidine
- (c) Dimethyl glyoxime
- (d) Potassium ferrocyanide

### 43. Which of the following name is correct?

- (a) [Cu (H<sub>2</sub>O)(NH<sub>3</sub>)Br<sub>2</sub>]:
  Amminoaquodibromo copper (I)
- (b)  $Na_3[Al(C_2O_4)_3]$ : Trisodium trioxalatoaluminate (III)
- (c) Na<sub>2</sub> [Ni(EDTA)] : Sodium ethylenediaminetetracetatonickel (II)
- (d)  $[Co(NH_3)_5ONO]SO_4$ : Pentamminenitro cobalt (III) Sulphate.

### 44. The correct IUPAc name of the complex : [FeF<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>-</sup>?

- (a) diaquairon (III) tetrofluerate ion
- (b) diaquatetrafluorido ferrate (III) ion
- (c) diaquatetrafluoro iron (III) ion
- (d) tetrafluorodihydroxyferrate (III) ion

# 45. Which of the following gives the correct coordination number and oxidation number of the transition metal atom in [Co(NH<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>Cl<sub>2</sub>]\*?

- (a) C.N. = 3, O.N. = +1
- (b) C.N. = 4, O.N. = +2
- (c) C.N. = 6, O.N. = +1
- (d) C.N.=6, O.N.=+3

# 46. The correct formula of the complex tetramminea quathiocyanate - N-cobalt (III) Chloride is:

- (a)  $[CO(NH_3)_4(H_2O)(NCS]Cl_2$
- (b)  $[Co(H_2O)(NH_3)_4(NCS)]Cl_2$
- (c)  $[Co(CNS)(H_2O)(NH_3)_4]Cl_2$
- (d)  $[Co(NCS)(NH_3)_4(H_2O)]Cl_2$

### 47. Which name formula combination is not correct?

- (a)  $[Co (NH_3)_4 (OH_2) I] SO_4$ : tetrammineaquaiodocobalt (III) sulphate
- (b) K [ Cr (NH<sub>3</sub>)<sub>2</sub> Cl<sub>4</sub>] :
  Potassium diamminetetrachloro
  chromate (III)
- (c) [Mn (CN)<sub>5</sub>]<sup>2-</sup>:
  Pentacyanomanganate (II) ion
- (d) [Ni (CO<sub>4</sub>)]: tetracarbonylnickel(O)

### 48. The complex which has no 'd' electrons in the central metal atom is :

- (a)  $[MnO_4]^-$  (b)  $[Fe (CN)_6]^{3-}$
- (c)  $[Cr(H_2O)_a]^{3+}$  (d)  $[Co(NH_3)_a]^{3+}$

#### 49. The cationic complex is:

- Cuprammonium ion (a)
- (b) Ferrocyonide ion
- Mercuriciodide ion (c)
- (d) Argentocyanide ion

#### **50**. 2: 4 dinitrophenyl hydrazine is an example for:

- tridentate ligand (a)
- (b) didented ligand
- monodentate ligand (c)
- (d) polydental ligand

### Answer Keys

#### Select the correct answer from the choices given under each bit : I.

- 1. (a)
- 14. (c)
- 27. (b)
- 40. (c)

- 2. (b)
- 15. (a)
- 28. (d)
- 41. (a)

- 3. (b)
- 16. (a)
- 29. (d)
- 42. (c)

- 4. (b)
- 17. (c)
- 30. (d)
- 43. (c)

- 5. (c)
- 18. (c)
- 31. (c)
- 44. (b)

- 6. (b)
- 19. (a)
- 32. (b)
- 45. (d)

- 7. (a)
- 20. (b)
- 33. (b)
- 46. (a)

- 8. (a)
- 21. (a)
- 34. (a)
- 47. (c)

- 9. (a)
- 22. (b)
- 35. (c)
- 48. (a)

- 10. (c)
- 23. (b)
- 36. (a)
- 49. (a)

- 11. (a)
- 24. (a)
- 37. (c)
- 50. (c)

- 12. (b)
- 25. (d)
- 38. (d)

- 13. (c)
- 26. (b)
- 39. (b)

#### **II.** Short Questions

- Q1. On the basis of valence bond theory explain  $[Ni(CN)_4]^{2-}$  ion with square planar structure having diamagnetic and  $[NiCl_4]^{2-}$  ion is tetrahedral and paramagnetic.
- **Ans.** [Ni(CN)<sub>4</sub>]<sup>2-</sup> and [Ni Cl<sub>4</sub>]<sup>2-</sup> entities seems to be similar but [Ni(CN)<sub>4</sub>]<sup>2-</sup> shows dsp<sup>2</sup> hybridization giving square planner structure having no unpaired electrons hence diamagnetic. But [NiCl<sub>4</sub>]<sup>2-</sup> shows sp<sup>3</sup> hybridization having two unpaired electrons in 'd' orbital, hence it is paramagnetic.
- Q2. A co-ordination compound has the formula CoCl<sub>3</sub> 4NH<sub>3</sub>. It does not liberate ammonia but precipitates chloride ions as silver chloride. Give the IUPAC name of the complex and write its formula.
- **Ans.** [Co(NH<sub>3</sub>)<sub>4</sub> Cl<sub>2</sub>] Cl. As Cobalt has C. N. 6, then the compound is [Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>] Cl. tetraamminedichlorido cobalt (III) chloride.
- Q3. Which of the two compounds is more stable and why?  $K_4[Fe(CN)_6], K_3[Fe(CN)_6]$
- **Ans.**  $K_4$  [Fe(CN)<sub>6</sub>] is more stable than  $K_3$  [Fe (CN)<sub>6</sub>]. The effective atomic number of metal complex is the number of electrons present in the metal ion plus the number of electrons donated to it by the ligand. The calculation EAN = At No -Oxd<sup>n</sup> state + 2x C.N.

For 
$$K_4$$
 [Fe (CN)<sub>6</sub>]<sup>4-</sup>, EAN = 26 - 2 + 2 x 6 = 36 i.e. Kr  
For  $K_3$  [Fe (CN)<sub>6</sub>], EAN = 26-3+2x6 = 35  
So  $K_4$  [Fe(CN)<sub>6</sub>]<sup>4-</sup> is more stable.

#### Q4. What is crystal field splitting?

- **Ans.** In free transition metal ion, all the 5d-orbitals are degenerate but when it is involved in a complex formation, the degeneracy is split. This is called crystal field splitting.
- Q5. [Fe  $(H_2O)_6$ ]<sup>3+</sup> is strongly paramagnetic where as [Fe(CN)<sub>6</sub>]<sup>3-</sup> is weakly paramagnetic. Explain.
- **Ans.** In both the complexes, Fe is in +3 oxidation state with 3d<sup>5</sup>configuration. In the presence of 3d electrons pair up leaving only one unpaired electron. There is d<sup>2</sup>sp<sup>3</sup>hybridization forming inner orbital complex with CN<sup>-</sup> strong ligand.
  - $\rm H_2O$  is a weak ligand. In the presence of  $\rm H_2O$  ligand, the 3d electrons do not pair up. The hybridization is  $\rm sp^3d^2$  forming an outer orbital complex containing five unpaired electrons. Hence it is strongly paramagnetic.

- Q6. Why metal carbonyls are called organometallics?
- Ans. Metal carbonyls are called organometallics because the 'C' atom of the CO is linked to the metal atom. So that the metal - carbon bonds have both  $\sigma$  and  $\pi$  character.
- Q7. A co-ordination compound with the molecular formula CrCl<sub>3</sub>. 4H<sub>2</sub>O precipitates AgCI with AgNO<sub>3</sub> solution. Its molar conductivity is found to be equivalent to two ions. What is the structural formula of the compound?
- **Ans.** Cr has co-ordination number 6. But there are 4 neutral H<sub>2</sub>O ligands, hence two more ligands are taken as Cl<sup>-</sup> and the other Cl<sup>-</sup> will be present outside entity. So the structure is [Cr(H<sub>2</sub>O)<sub>4</sub>Cl<sub>2</sub>] CI - tetraaquadichloridochromium (III) chloride.
- Q8. Using IUPAC norms write the names of the following.
  - (a)
- K<sub>4</sub>[Fe(CN)<sub>6</sub>] (b) [Ni Cl<sub>4</sub>]<sup>2</sup>-
- (c)  $[Co (en)_3]^{3+}$
- **Ans.**  $K_4$  [Fe(CN)<sub>6</sub>] Potassium hexacyanoferrate (II)

[Ni Cl<sub>4</sub>]<sup>2-</sup> - Tetrachloridonickelate (II) ion

[Co (en)<sub>3</sub>]<sup>3+</sup> - Tris (ethane 1,2 diammine) Cobalt (III) ion

- Q9. How many isomers are possible for the neutral complex [Co(NH<sub>3</sub>)<sub>3</sub>Cl<sub>3</sub>]?
- **Ans.**  $[Co(NH_3)_3 Cl_3]$  has two isomers, cis and trans.
- Q10. What is meant by unidentate and ambidentate ligands?
- Ans. A molecule or an ion has only one donor atom to form one co-ordinate bond with the central metal atom is called unidentate ligand e.g. Cl-, NH<sub>3</sub>. A molecule or an ion has two donor atoms but only one of them can form a co-ordinate bond at a time with the central metal atom is called ambidentate ligand e.g. CN<sup>-</sup> or NC<sup>-</sup> and NO<sub>2</sub><sup>-</sup> or ONO<sup>-</sup>.
- Q11. Calculate the oxidation numbers of the metals in the following co-ordination species.
  - [Pt Cl<sub>4</sub>]<sup>2-</sup> (a)
- (b)  $[Cr(NH_3)_3 Cl_3]$  (c)  $K_4[Fe(CN)_6]$
- [Pt Cl<sub>4</sub>]<sup>2-</sup>, the oxidation no: x + 4(-1) = -2 or x = +2Ans. (a)
  - $[Cr(NH_3)_3 Cl_3]$ , the oxidation No. : x + 0 + 3(-1) = 0 or x = +3(b)
  - $K_{A}[Fe(CN)_{e}]$ , the oxidation No. : x + 6(-1) = -4 or x = +2(c)

#### Q12. Write the formula of the following co-ordination compounds

- (a) Dichloridoplatinum (IV) tetrachloridoplatinate (II)
- (b) Sodium pentacyanonitrosylsulphido ferrate (III)
- (c) Potassium amminetrichloridopalatinate (II)
- Ans. (a) Dichloridoplatinum (IV) tetrachloridoplatinate (II): [Pt Cl<sub>2</sub>] [Pt Cl<sub>3</sub>]
  - (b) Sodium pentacyanonitrosylsulphido ferrate (III): Na<sub>4</sub> [Fe(CN)<sub>5</sub>. NOS]
  - (c) Potassium ammine trichloridoplatinate (II): K [Pt (NH<sub>3</sub>) Cl<sub>3</sub>]

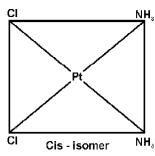
#### Q13. What is meant by chelate effect? Give examples.

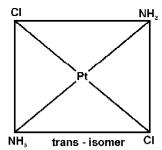
Ans. The complexes which are formed by chelating ligands like ethylene diamine (en), EDTA etc are more stable than those formed by monodentate ligands such as H<sub>2</sub>O or NH<sub>3</sub>. This enhanced stability of complexes containing chelating ligands is called chelate effect. Such as the complex of Ni with chelating ligand (en) is more stable than corresponding complex with ammonia ligand.

$$Ni^{2+}(aq) + 6NH_3(aq) \rightleftharpoons [Ni(NH_3)_6]_{(aq)}^{2+} : log \beta = 8.61$$

$$Ni^{2+}(aq) + 3en(aq) \rightleftharpoons [Ni(en)_3]_{(aq)}^{2+} : log \beta = 18.28$$

#### Q14. Explain the difference between weak field ligand and strong field ligand.


Ans. Ligands have different field strength and as a result the crystal field splitting  $\Delta_0$  or  $\Delta_t$ , depends upon the field produced by the ligand and charge on metal ions. Some ligands are able to produce strong fields in which the splitting will be large whereas others produce weak fields and consequently result in small splitting of d-orbitals. The arrangement of ligands in order of increasing field strength is known as spectro chemical series.


$$I^- < Br^- < SCN^- < Ci^- < S^{2-} < F^- < OH^- < C_2O_4^{2-} < H_2O < edta^{4-} < NH_3 < en < CN^- < CO$$

#### Q15. Define stereo isomerison. Give the geometrical isomers of [Pt $(NH_3)_2$ $Cl_2$ ].

15. In co-ordination compounds, the ligands are arranged in space in specific orientation around a given metal atom or ion which is known as stereo isomerism. This is two types (i) Geometrical (ii) Optical.

The geometrical isomers of [Pt (NH<sub>3</sub>)<sub>2</sub> Cl<sub>2</sub>]: diamminedichloridoplatinum (II) shows Cis and trans isomers.





Q16. A solution of  $[Ni(H_2O)_6]^{2+}$  is green but a solution of  $[Ni(CN)_4]^{2-}$  is colourless. Explain.

Ans. In [Ni(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> the metal ion Ni is in +2 state with 3d<sup>8</sup> configuration that is two unpaired electrons do not pair up in the presence of the weak H<sub>2</sub>O ligand. Hence it is coloured and shows green. But in [Ni(CN)<sub>6</sub>]<sup>2-</sup>, though Ni is in +2 state but due to presence of strong field ligand (CN), the two unpaired electrons in 3d orbitals pair up. Thus, it shows no unpaired electrons and is colourless.

Q17. What is the oxidation state of Ni in [Ni(CO)<sub>4</sub>]?

**Ans.** [Ni (CO)<sub>4</sub>] the oxidation state of Ni :  $x + 4 \times 0 = 0$  or x = 0

Q18. Give the geometry and magnetic character of [Ni Cl<sub>4</sub>]<sup>2-</sup>.

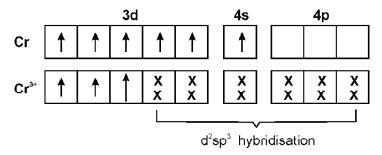
**Ans.** [Ni(Cl<sub>4</sub>]<sup>2-</sup> gives sp<sup>3</sup> hybridization of tetrahedral structure. The electrons present in 3d<sup>8</sup> orbitals do not pair up as Cl<sup>-</sup> is weak ligand. So it shows paramagnetic.

Q19. What is bidentate ligand? Give one example.

**Ans.** The molecule or ion which contain two donor atoms and hence forms two co-ordinate bonds with the central metal atom is called bidentate ligand

$$\begin{array}{cccc} & CH_2NH_2 & COO^-\\ e.g. & I & I\\ CH_2NH_2 & COO^- \end{array}$$

Q20. What are  $t_{2g}$  and  $e_{g}$  orbitals ?


Ans. In a free transition metal ion, the five 'd' orbitals are degenerate. When complex is formed, the degeneracy is split. In octahedral field, the three 'd' orbitals having lower energy called  $t_{2g}$  and the remaining two 'd' orbitals of higher energy called  $e_{g}$  orbitals.

#### Q21. What are the basic postulates of Werner's theory of co-ordination?

**Ans.** Werner's postulate: The co-ordination complex the metal possesses primary and secondary valencies. Primary valence satisfies the oxidation state and secondary valence satisfies the coordination number. Different co-ordination numbers have characteristic spatial arrangement of the ions or groups bound by secondary linkage.

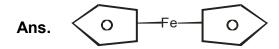
### Q22. Using valence bond theory of complexes, explain the geometry and paramagnetic nature of the ion $[Cr(NH_3)_6]^{3+}$ , given the atomic number of Cr = 24.

**Ans.** In  $[Cr(NH_3)_6]^{3+}$  ion the Cr is in +3 oxidation state. The electronic configuration  $3d^5 4s^4$ .



6 pairs of electrons from 6NH<sub>3</sub> molecules

So [Cr(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> has d<sup>2</sup>sp<sup>3</sup> hybridization of octahedral structure. But due to presence of unpaired electrons, it is paramagnetic.


### Q23. How does the crystal field theory explain high spin and low spin states of complexes?

Ans. When ligand is approached the transition metal ion, the 'd' orbitals split into two sets. One set is to lower energy of triple generated and the other set is to higher energy of doubly generated. The energy difference between these two splitting is  $\Delta_0$  (for octahedral field).

If  $\Delta_0 < P$  (pairing energy) the 4<sup>th</sup> electron enters one of the  $e_g$  orbital giving  $t_{2g}^{-3}$   $e_g^{-1}$  thus forming high spin compliexes. Such ligands for which  $\Delta_0 < P$  are called weak field ligands.

If  $\Delta_0 > P$ , the 4th electron enters to  $t_{2g}$  orbitals to pair up giving  $t_{2g}^{\phantom{2g}4} e_g^{\phantom{g}0}$ , there by forming low spin complexes. Such ligands for which  $\Delta_0 > P$  are called strong field ligands.

#### Q24. Draw the structure of ferrocene.



structure of ferrocene

#### Q25. What is the difference between inner and outer orbital complex?

Ans. When the complex formed involves the inner (n-1) d orbital for hybridisation (e.g. d²sp³), the complex is called inner orbital complex. In this case, the electrons of the metal are made to pair up, so the complex will be either diamagnetic or will have lesser No. of unpaired electrons give low spin complex [Co(NH<sub>3</sub>)<sub>6</sub>]³+.

When the complex formed involves the use of nd orbitals for hybridization (sp<sup>3</sup>d<sup>2</sup>) called outer orbital complex. The complex will have large number of unpaired electrons and remains unchanged. So it is called high spin complex e.g.  $[Ni(H_2O)_{\epsilon}]^{2+}$ .

- Q26. Why the tetrahedral complex do not show geometrical isomerism?
- **Ans.** Because the relative position of the ligands attached to the central metal atom are the same with respect to each other.
- Q27. Why chelated complexes are more stable than unchelated complexes?
- **Ans.** When a chelated ligand attached to the central metal atom the process is accompanied by increase in entropy resulting in the formation of a stable complex.
- Q28. Copper sulphate solution on mixing with ammonia (ratio 1 : 4) does not give test for Cu<sup>2+</sup> ions but gives test for sulphate ions. Why?
- **Ans.** When ammonia co-ordinates to copper it forms the complex [Cu(NH<sub>3</sub>)<sub>4</sub>]SO<sub>4</sub>. Copper is present in co-ordination sphere and therefore is non-ionic where as sulphate ion is present in ionic sphere and hence ionic.
- Q29. What happens when excess of KCN is added to aqueous  $CuSO_4$  solution? Why is it that no precipetate of copper sulphide is obtained when  $H_2S_{(g)}$  is passed through the solution?
- **Ans.**  $[Cu(H_2O)_4]^{2+} + 4CN^- \rightarrow [Cu(CN)_4]^{2-}$

As CN<sup>-</sup> is a strong ligand it forms a highly stable complex with Cu<sup>2+</sup> ions which on passing H<sub>2</sub>S gas, the weak ligand S<sup>2-</sup> can not replace CN<sup>-</sup> ion.

- Q30. Write the formulae of the following complexes.
  - (a) Pentamminechloridocobalt (III)
  - (b) Lithiumtetrahydroaluminate (III)
- **Ans.** (a)  $[Co(NH_3)_5Cl]^{2+}$ 
  - (b) Li[AlH<sub>4</sub>]

- Q31. Why the species  $[CuCl_{4}]^{2}$  exists while  $[Cul_{4}]^{2}$  does not?
- **Ans.** lodine atom is much larger size and copper atom is not able to accomodate four big atoms around it.
- Q32. Write the chemical formula of sodiumtrioxalatoferrate (III). How many ions are formed by dissociation of one molecule of this compound?

Ans. Cation: Nat

Onion :  $[Fe(C_2O_4)]^{3-}$ 

Formula of the complex : Na<sub>3</sub> [Fe  $(C_2O_4)_3$ ]

Four ions are formed by dissoication of one molecule of this compound (three Na<sup>+</sup> and one complexation).

$$Na_3[Fe(C_2O_4)_3] \rightarrow 3Na^+ + [Fe(C_2O_4)_3]^{3-}$$

- Q33. What happens when potossium ferrocyanide solution is added to a ferric salt solution?
- Ans. A prussian blue colour complex (ferri-ferrocyanide) is formed

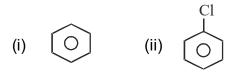
$$4\text{FeCI}_3 + 3\text{K}_4[\text{Fe}(\text{CN})_6] \rightarrow \text{Fe}_4[\text{Fe}_3(\text{CN})_6]_3 + 12\text{KCI}$$
  
Pol. ferrocyanide Ferri – ferrocyanide

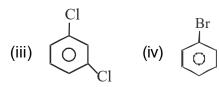
- Q34. Why only transition metals are known to form  $\pi$  complexes?
- **Ans.** Transition metal ions have empty 'd' orbitals, into which the electron pairs can be donated by ligands containing  $\pi$  electrons eg.  $CH_2=CH_2$ ,  $C_5H_5$ ,  $C_6H_6$  etc.
- Q35. Give names of two complexes which are used in medicines.
- **Ans.** (i) EDTA used for the treatment of lead poisoning.
  - (ii) Cis platin: [Pt (NH<sub>3</sub>)<sub>2</sub> Cl<sub>2</sub>] used for treatment of cancer.

\*\*\*

#### HALO ALKANES AND HALOARENES

- I. Select the correct answer from the choices given under each bit :
- 1. The order of reactivity of following alcohols with halo acids is
  - (i) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub> - OH
  - CH<sub>3</sub>CH<sub>2</sub> CH OH I CH<sub>3</sub> (ii)
  - CH<sub>3</sub>CH<sub>2</sub>C-OH I CH<sub>3</sub>
  - (a) i > ii > iii
- (b) iii > ii > i
- (c) ii > i > iii (d) i > iii > ii
- 2. Which of the following alcohols will yield the corresponding alkyl chloride on reaction with concentrated HCI at room temperature?
  - (a)  $CH_3 CH_2 OH$
  - $CH_3$   $CH_2$  CH OH  $CH_3$
  - $\mathsf{CH_3CH_2} \, \mathsf{CH} \mathsf{CH_2} \mathsf{OH}$ (c)
  - CH<sub>3</sub>CH<sub>2</sub> C OH


Identify the compound Y in the 3. following reaction.


- 4. Toluene reacts with a halogen in presence of iron (III) chloride giving ortho and para halo compound. The reaction is
  - (a) Electrophilic elimination reaction
  - (b) Electrophilic substitution reaction
  - (c) Free radical addition reaction
  - Nucleophilic substitution reaction
- 5. Which of the following is halogen exchange reaction?
  - (a)  $RX + NaI \rightarrow R - I + NaX$
  - (p)  $C=C\langle +HX - \stackrel{\uparrow}{C} \stackrel{\Gamma}{C} \stackrel{\Gamma}{C} -$
  - (c)  $R OH + HX \xrightarrow{ZnCl_2} R X + H_2O$
  - (d)  $\bigcirc$  CH<sub>3</sub> + X<sub>2</sub>  $\rightarrow$   $\bigcirc$  CH<sub>3</sub> + CI  $\bigcirc$  CH<sub>3</sub>

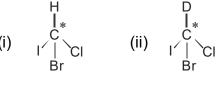
6. Which reagent will you use for the following reaction ?

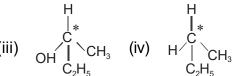
$$\begin{aligned} \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_3} &\to \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CI} + \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{CH_3} \\ \mathsf{CI} \end{aligned}$$

- (a) o o lo uv light
- (b) NaCl + H<sub>2</sub>SO<sub>4</sub>
- (c) Cl<sub>2</sub> gas in dark
- (d) Cl<sub>2</sub>gas in the presence of iron in dark
- 7. Arrange the following compounds in the increasing order of their densities.






- (a) i < ii < iii < iv (b) i < iii < iv < ii
- (c) iv < iii < ii < i (d) ii < iv < iii < i
- 8. Arrange the following compounds in increasing order of their boiling points.


(i) 
$$CH_3 \rightarrow CH - CH_2 - Br$$

(ii) 
$$CH_3 - CH_2 - CH_2 - CH_2 - Br$$

- (a) ii < i < iii
- (b) i < ii < iii
- (c) iii < i < ii
- (d) iii < ii < i

9. In which of the following molecules carbon atom marked with asterisk (\*) is assymatric?





- (a) i, ii, iii, iv
- (b) i, ii, iii
- (c) ii, iii, iv
- (d) i, iii, iv
- 10. Which of the following is an example of Vic-dihalide
  - (a) dichloro methane
  - (b) 1,2 dichloro ethane
  - (c) ethylidene chloride
  - (d) alkyl chloride
- 11. The position of -Br in the compound in  $CH_3$   $CH = CHC(Br)(CH_3)_2$  can
  - (a) Alkyl
- (b) Aryl
- (c) Vinyl
- (d) Secondary
- 12. Chlorobenzene is formed by reaction of chlorine with benzene in the presence of AlCl<sub>3</sub>, which of the following species attacks the benzene ring in this reaction.
  - (a) Cl-
- (b) Cl<sup>+</sup>
- (c) AICI<sub>3</sub>
- (d) [Al Cl<sub>4</sub>]
- 13. Ethylidene chloride is a/an \_\_
  - (a) vic-dihalide (b) gem-dihalide
  - (c) allylic halide (d) vinylic halide

- 14. Which of the following alkyl halide will undergo S<sub>N</sub>1 reaction most readily?
  - (a)  $(CH_3)_3 C F$  (b)  $(CH_3)_3 C CI$
  - (c)  $(CH_3)_3 C Br (d) (CH_3)_3 C I$
- 15. What is 'A' in the following reaction?

(a) 
$$CH_2$$
-CH = CH

- 16. A primary alkyl halide would prefer to undergo \_\_\_\_\_
  - (a) S<sub>N</sub>1 reaction
  - (b) S<sub>N</sub>2 reaction
  - (c)  $\alpha$  Elimination
  - (d) Racemisation
- 17. The reaction of toluene with chlorine in the presence of iron and in the absence of light yields \_\_\_\_\_.



- (b) CH<sub>3</sub>
- (c) CH<sub>3</sub>OCI
- (d) Mixture of b & c

- 18. Chloromethane on treatment with excess ammonia yields mainly:-
  - (a) N-N dimethyl methanamine  $(CH_3 N < ^{CH_3}_{CH_3})$
  - (b) N-methyl methanamine (CH<sub>3</sub>-NH-CH<sub>3</sub>)
  - (c) Methanamine (CH<sub>3</sub>NH<sub>2</sub>)
  - (d) Mixture containing all these in equal proportion
- 19. Which of the following are secondary bromides ?
  - (a)  $(CH_3)_2$  CHBr
  - (b)  $(CH_3)_3 C CH_2 Br$
  - (c) CH<sub>3</sub> CH (Br) CH<sub>2</sub> CH<sub>3</sub>
  - (d)  $(CH_3)_2 C (Br) CH_2 CH_3$
- 20. Which of the following compounds can be classified as aryl halide?
  - (a)  $p CIC_6H_4CH_2CH(CH_3)_2$
  - (b)  $p CH_3 CHCI(C_6H_4)CH_2CH_3$
  - (c) o  $BrCH_2$   $C_6H_4CH(CH_3)CH_2CH_3$
  - (d)  $C_6H_5CI$
- 21. Ethylene dichloride and ethylidene chloride are isomers. Identify the correct statement.
  - (a) Both the compounds form same product with alcoholic KOH.
  - (b) Both the compounds form same product on treatment with aq. NaOH.
  - (c) Both the compounds form same products on reduction
  - (d) Both the compounds are optically active

- 22. In the addition of HBr to propene in the absence of peroxides, the first step involves the addition of
  - (a) H<sup>+</sup>
- (b) Br -
- (c) H
- (d)
- 23.  $_{\rm s}$  <sub>N</sub>2 reaction proceeds through the intervention of
  - (a) Carbonium ion
  - (b) Transition state
  - (c) Free radial
  - (d) Carbanion
- 24. Which of the following reactions is most suitable for the preparation of n-propylbenzene.
  - (a) Friedel Craft reaction
  - (b) Wurtz reaction
  - (c) Wurtz Fittig reaction
  - (d) Grignard reagent
- The addition of HBr is easiest with
  - (a) CH<sub>2</sub> = CHCl
  - (b) CICH = CHCI
  - (c)  $CH_3 CH = CH_2$
  - (d)  $(CH_3)_2 C = CH_2$
- 26. The most reactive nucleophile among the following is
  - (a)  $CH_3O^{-1}$
  - (b)  $C_6H_5O^-$
  - (c)  $(CH_3)_2 CHO^{-1}$
  - (d) (CH<sub>3</sub>)CO-

- 27. Which of the following can not be used in Friedel-Crafts reaction?
  - (a) FeCl<sub>2</sub>
- (b) FeBr<sub>2</sub>
- (c) AICI<sub>3</sub>
- (d) NaCl
- 28. Tertiary alkyl halides are practically inert to substitution by  $S_N 2$ mechanism, because
  - (a) insolubility
  - (b) instability
  - (c) inductive effect
  - (d) steric hinderance
- 29. Among the following the strongest nucleophile is

  - (a)  $C_2H_5SH$  (b)  $CH_3COO^{-1}$
  - (c) CH<sub>2</sub>NH<sub>2</sub>
    - (d) NCCH<sub>2</sub>
- 30. The catalyst used in the preparation of alkyl chlorides by the action of dry HCI on an alcohol is
  - anhydrous AICI, (a)
  - (b) FeCl<sub>3</sub>
  - (c) anhydrous ZnCl<sub>2</sub>
  - (d) Cu
- 31. The halogen compound which most readily undergoes nucleophilic substitution is
  - (a)  $CH_2 = CHCI$
  - (b) CH<sub>3</sub>CH=CHCl
  - (c)  $CH_2 = CHC (CI) = CH_2$
  - (d) CH<sub>2</sub> = CH CH<sub>2</sub>Cl

### 32. S<sub>N</sub>1 reaction of optically active alkyl halides leads to

- (a) retention of configuration
- (b) racemisation
- (c) inversion of configuration
- (d) none of these

# 33. Aryl halides are less reactive towards nucleophilic substitution reactions as compared to alkyl halides due to

- (a) the formation of less stable carbonium ion
- (b) resonance stabilization
- (c) longer carbon-chlorine bond
- (d) the inductive effect

### 34. An S<sub>N</sub>2 reaction at an asymmetric carbon of a compound always gives

- (a) an enantiomer of the substrate
- (b) a product with opposite optical rotation
- (c) a mixture of diastereomers
- (d) a single stereoisomer

### 35. Hydrolysis of benzyl chloride to form benzyl alcohol is an example of

- (a) electrophilic addition
- (b) elimination reaction
- (c) substitution reaction
- (d) hydrolysis reaction

### 36. Which of the following compounds is an allylic halide?

- (a) 1-chloro propoane
- (b) 3-chloro propene
- (c) 2-chloro propene
- (d) 1-chloro propene

### 37. Which of the following compounds has the highest boiling point?

(a) 
$$CH_3 - CH_2 - CH_2 - CH_2 - CI$$

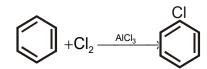
(b) 
$$CH_3 - CHCI - CH_2 - CH_3$$

$$\begin{array}{ccc} & \text{CH}_3 - \text{CH}_2 - \text{CH} - \text{CI} \\ \text{I} & \text{CH}_3 \end{array}$$

$$(d) \begin{array}{c} CH_3 \\ I \\ CH_3 - C - CI \\ I \\ CH_3 \end{array}$$

### 38. The conversion CI - CH = CH - CI to CI,CH-CHCI, can be carried out with:

- (a) Cl<sub>2</sub> / AlCl<sub>3</sub>
- (b) Cl<sub>2</sub>/aq.NaOH
- (c)  $Cl_2$
- (d)  $Cl_2/hv$


### 39. The conversion of 2, 3-dibromobutane to 2-butene with Zn and alcohol is:

- (a)  $\alpha$  -elimination
- (b) redose reaction
- (c) β-elimination
- (d) both  $\beta$ -elimination and redox reaction

### 40. The addition of propene with HOCI proceeds via the addition of :

- (a) Cl⁺ in the first step
- (b) OH- in the first step
- (c) Cl<sup>+</sup> and OH<sup>-</sup> in a single step
- (d) H<sup>+</sup> in the first step

#### 41. In the following reaction



The species that attacks benzene is:

- (a) Cl-
- (b) Cl+
- (c) AICI<sub>3</sub>
- (d) AICI<sub>4</sub>

# 42. Toluene reacts with Chlorine in the presence of iron (III) Chloride give Ortho ad para Chloro compounds. The reaction is:

- (a) Electrophilic elimination reaction
- (b) Free radical substitution reaction
- (c) Electrophilic substitution reaction
- (d) Nucleophilic substitution reaction

### 43. Which of the following represents a gem dihalide?

- (a) Ethylene dichloride
- (b) 2, 2-dichlore propane
- (c) 1, 3-dichloro propane
- (d) 1, 2-dichloro propane

## 44. To prevent chloroform to form phosgene gas (poisonous gas) what is added?

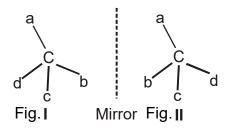
- (a)  $C_2H_5OH$
- (b) CH<sub>3</sub>COOH
- (c) CH<sub>3</sub>OH
- (d) CH<sub>3</sub>COCH<sub>3</sub>

# 45. Which of the following sequence of reactions (reagents) can be uses for conversion of $C_6H_5CH_2CH_3$ into $C_5H_5CH = CH_2$ ?

- (a)  $Cl_2/hv;H_2O$
- (b) SOCl<sub>2</sub>;alcKOH
- (c) SO<sub>2</sub>Cl<sub>2</sub>;alcKOH
- (d) SOCI<sub>2</sub>; H<sub>2</sub>O

#### Answer Keys

## I. Select the correct answer from the choices given under each bit :


- 1. (b) 16. (b) 31. (d)
- 2. (d) 17. (d) 32. (b)
- 3. (a) 18. (a) 33. (b)
- 4. (b) 19. (a) & (c) 34. (d)
- 5. (a) 20. (b) & (d) 35. (c)
- 6. (a) 21. (a) & (c) 36. (b)
- 7. (a) 22. (a) 37. (a)
- 8. (c) 23. (b) 38. (c)
- 9. (b) 24. (c) 39. (d)
- 10. (b) 25. (d) 40. (a)
- 11. (a) 26. (a) 41. (b)
- 12. (b) 27. (d) 42. (c)
- 13. (b) 28. (d) 43. (b)
- 14. (d) 29. (a) 44. (a)
- 15. (c) 30. (c) 45. (c)

#### II. Short Questions

#### Q1. What are enantiomers?

**Ans.** Molecules which are non-superimposable mirror image of each other are called enantiomers.

Fig. I is not super imposable with Fig. II.



#### Q2. Differentiate between chiral and achiral molecules.

**Ans.** A chiral molecule has one asymmetric carbon atom. It gives none super imposable mirror image.

Achiral molecule gives superimposable mirror image.

Q3. Arrange the following halides in order of increasing  $S_N^2$  reactivity  $CH_3CI$ ,  $CH_3Br$ ,  $CH_3CI$ ,  $(CH_3)$ , CHCI

**Ans.** 
$$(CH_3)_2 CHCI < CH_3CH_2CI < CH_3CI < CH_3Br$$

4. Arrange the following in decreasing order of  $S_N$ 1 reactivity.

$$\mathsf{CH_3CH_2CH_2CI}, \, \mathsf{CH_2} = \mathsf{CHCHCICH_3}, \, \mathsf{CH_3CH_2CHCICH_3}$$

$$\textbf{Ans.} \quad \text{CH}_2 = \text{CHCHCICH}_3 > \text{CH}_3 \text{CH}_2 \text{CHCICH}_3 > \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{CI}.$$

5. Explain vinyl chloride is hydrolysed more slowly than ethyl chloride.

Ans. Vinyl chroride is represented as two resonance structures

$$CH_2 = CH - \overline{CI}: \longrightarrow \overline{CH_2} - CH = CI^+$$

Thus the C - CI bond acquires some double bond character but in ethyl chloride  $(CH_3 - CH_2 - CI)$ , the C - CI bond is purely single bond. So vinyl chloride hydrolyses more slowly than ethyl chloride.

- 6. Justify haloalkanes undergo nucleophilic substitution reactions where as haloarenes undergo electrophilic substitutions.
- **Ans.** Haloalkanes having C X bond forms carbocation having more +ve charge than haloarenes due to presence of benzene ring, as a result haloalkanes undergo nucleophilic substitution more readily and haloarenes undergo electrophilic substitution due to presence of benzene ring.

#### 7. Write the IUPAC names of the following.

- (a) (CH<sub>3</sub>)<sub>2</sub> CH CH CI CH<sub>3</sub>
- (b) CHF<sub>2</sub>CBrCIF
- (c) Br⊘CI
- **Ans.** (a)  $(CH_3)_2CHCHCICH_3: 2$  chloro 3 methyl butane
  - (b) CHF<sub>2</sub> CBr CIF: 1-Bromo 1-chloro 1, 2, 2- trifluoroethane
  - (c)  $Br\langle o \rangle Cl$ : p bromo chloro benzene
- 8. What are ambident nucleophiles? Explain with example.
- **Ans.** The nucleophiles which can attack through two different sites are called ambident nucleophiles e.g.

$$(-) \qquad (-)$$

$$: C \equiv N : \longrightarrow C = N :$$

So it can act as cyanides when attack was done on C atom and can act as isocyanides when attack was done on N atom.

#### 9. How DDT is prepared?

**Ans.** When chlorobenzene reacts with trichloro acetaldehyde (Chloral) in presence of Conc H<sub>2</sub>SO<sub>4</sub> form DDT (pp'-dichloro diphenyl trichloro ethane)

- 10. What happens when brombenzene is treated with Mg in the presence of dry ether?
- **Ans.** When bromo benzene is treated with Mg in the presence of dry ether forms Grignard reagent (phenyl magnesium bromide).

Bromo benzene

Phenylmagnesium bromide

- 11. What happens when chlorine is passed through boiling toluene in the presence of sunlight?
- **Ans.** When chlorine is passed through boiling toluene in presence of sunlight benzyl chloride is formed, further form benzal dichloride, then benzotrichloride

$$\begin{array}{c|c} CH_3 & CH_2CI & CHCI_2 & CCI_3 \\ \hline \bigcirc & +CI_2 & \bigcirc & \bigcirc & \hline \\ & \bigcirc & & \bigcirc & \bigcirc \\ \end{array}$$

Toluene

Benzylchloride

Benzaldichloride Benzotrichloride

- 12. Give one test to distinguish C<sub>2</sub>H<sub>5</sub>Br and C<sub>6</sub>H<sub>5</sub>Br.
- **Ans.** On hydrolysis  $C_2H_5$  Br with aqueous KOH followed by acidification with dil HNO<sub>3</sub> and then on treatment with AgNO<sub>3</sub> gives light yellow precipitate of AgBr where as  $C_6H_5$ Br does not give this test.
- 13. How will you obtain 1-bromopropane from propene?
- **Ans.** Propene reacts with HBr in presence of peroxide (anti Markovnikov's rule) forms 1- bromopropane

$$\mathsf{CH}_3 - \mathsf{CH} = \mathsf{CH}_2 + \mathsf{HBr} - \mathsf{Peroxide} - \mathsf{EH}_3 \mathsf{CH}_2 \mathsf{CH}_2 \mathsf{Br}$$

Propene

I-bromopropane

- 14. What is an asymmetric carbon?
- **Ans.** A carbon which is attached to four different atoms or groups is called asymmetric carbon.

- 15. What is the condition to be satisfied for a compound to be chiral?
- Ans. The mirror image of the compound is not super imposable is said to be chiral.

#### 16. What is a racemic modification?

- **Ans.** When equal proportions of two enentiomers of any optically active compound present together is called racemic mixture and the product is optically inactive.
- 17. What happens when iodoform is heated with silver powder? Write the chemical equation.

**Ans.** 
$$2CH_3I + 6Ag \xrightarrow{heat} CH = CH + 6AgI$$

- 18. Why do alkyl halides show nucleophilic substitution reactions?
- **Ans.** The halogen atom in haloalkanes is more electronegative than the carbon atom attached to it. As a result, carbon atom acquires a partial positive charge and the halogen atom a partial negative charge

The presence of +ve charge on carbon atom makes it easy to attack by nucleophilic reagents. When the nucleophile stronger than the halide ion approaches to carbocation, the halogen atom is displaced and a new bond is formed by the nucleophile with the carbon.

Such reactions in which a strong nucleophile displaces a weaker nucleophile.

- 19. Explain why alkyl halides undergo hydrolysis more easily than aryl halides.
- **Ans.** The aryl halides are stabilized by resonance but alkyl halides are not. The displacement of halogen from aryl halide is much less than alkyl halides towards nucleophilic substitution reaction. Hence alkyl halides undergo hydrolysis more easily than aryl halides..
- 20. Write the following name reactions.
  - (a) Friedel-Craft reaction
  - (b) Wurtz-Fittig reaction
  - (c) Markovnikov's rule
  - (d) Sandmeyer reaction

#### Ans. (a) Friedel Craft Reaction

Haloarenes undergo electrophilic substitution reaction such as alkylation and acylation. The alkylation is possible when chlorobenzene reacts with methyl chloride in presence of anhydrous AlCl<sub>3</sub> forms o and p chloro toluene.

$$\begin{array}{c} \text{CI} \\ & \\ \bigcirc \end{array} + \text{CH}_3\text{CI} \xrightarrow{\text{anhy. AICI}_3} \qquad \begin{array}{c} \text{CI} \\ \bigcirc \end{array} + \begin{array}{c} \text{CI} \\ \bigcirc \end{array} \\ \text{O-Chlorobenzene} \qquad \text{p-Chlorotoluene} \\ \text{(Minor)} \qquad \text{(Major)} \end{array}$$

**Friedel Craft Acylation :** When chlorobenzene reacts with acetyl chloride in presence of anhy AlCl<sub>3</sub> forms. 2- chloroacetophenone and 4-chloroacetophenone.

2-Chloroacetophenone 4-Chloroacetophenone

#### (b) Wurtz Fittig Reaction:

Halo arenes when treated with an ethereal solution of an alkyl halide in presence of sodium form alkyl derivatives of benzene.

$$\Box$$
  $Br + 2Na + Br$  -  $CH_2CH_3$   $Dry$  ether  $\Box$   $O$   $CH_2CH_3 + 2NaBr$  Bromo benzene Ethyl bromide Ethyl benzene

#### (c) Markovnikov's Rule:

Alkenes react with halogen acids form haloalkanes.

$$CH_3 - CH = CH_2 + HBr - CH_3 - CH - CH_3$$

$$I$$

$$Br$$

$$2 - bromopropane$$

#### (d) Sandmeyer's Reaction:

Haloarenes (chloro and bromo arenes) are prepared from diazonium salt on treatment with CuCl and HCl.

### 21. Why alkyl halides are generally not prepared in laboratory by free radial halogenation of alkanes?

**Ans.** Free radical halogenation of alkanes not suitable method for laboratory synthesis of alkyl halides beause it results in the formation of many isomeric monosubstituted products through substitution of different kinds of H atoms. Moreover, polyhalogenation may also takes place.

#### 22. Why is chloroform not soluble in water although it is polar?

- **Ans.** The Chloroform molecules can not form hydrogen bonds with water. The energy required to break the bonds between haloalkanes and water molecules is much larger than the energy released during formation of new bonds between haloalkanes and water molecules.
- 23. What do you undrestand by the term nucleophilicity? Arrange the following in the decreasing order of their nucleophiticity F<sup>-</sup>,Br<sup>-</sup>,Cl<sup>-</sup>,l<sup>-</sup>.
- **Ans.** Nucleophilicity is defined in terms of the reaction of the nucleophile with in eletrophilic carbon.

$$Z^{-}:+-C-X \rightarrow Z-C-+:X^{-}$$

Greater the value of rate constant, K for the above reaction, greater is the nucleophilicity of the nucleophile.

$$l^- > Br^- > Cl^- > F^-$$

#### 24. Why are Grignard reagents be prepared under anhydrous condition?

**Ans.** Grignard reagents react with water and get decomposed (hydrolysed), hence they should be prepared under anhydrous conditions.

$$RMgX + H_2O \rightarrow R - H + Mg$$
OH

25. Write the major product of the reaction

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br 
$$\xrightarrow{\text{AgCN}}$$

**Ans.** 
$$CH_3CH_2CH_2Br \xrightarrow{AgCN} CH_3CH_2CH_2NC$$
 (n-propyl isocyanide)

#### 26. Why is allyl chloride hydrolysed much more readily than vinyl chloride?

**Ans.** Hydrolysis of allyl chloride takes place via allyl carbocation. It is highly stabilised by resonance at fast rate, hence hydrolysed readily.

$$CH_2 = CH - \overset{+}{C}H_2 \leftrightarrow \overset{+}{C}H_2 - CH = CH_2$$

On the otherhand, C-Cl bond in vinyl chloride has partial double bond character due to resonance and hence is difficult to cleave.

$$[\overrightarrow{CH_2} = \overrightarrow{CH} \overset{\checkmark}{-} \overset{(-)}{CI} \leftrightarrow : \overset{(-)}{C} \overset{}{H_2} - \overrightarrow{CH} = \overset{+}{CI}] \equiv \overset{\delta-}{CH_2} \overset{\circ-}{-} \overset{\delta+}{CH} \overset{\circ-}{-} \overset{\delta+}{CI}$$

Therefore allyl chloride is hydrolysed much more readily than vinyl chloride.

27. Complete the reaction Me - O - I + Cu Heat

**Ans.** Me 
$$-\bigcirc$$
 -I + Cu  $-$  Me  $-$  Me  $+$  Cu<sub>2</sub>I<sub>2</sub>

28. What happens when Chlorobenzene is subjected to hydrodysis?

**Ans.** 
$$\bigcirc$$
 - CI + NaOH<sub>(aq)</sub>  $\stackrel{\Delta}{\longrightarrow}$  No reaction.

29. Write the Chemical reaction to illustrate Saytzeff's rule.

Ans. 
$$CH_3CHBrCH_2CH_3 \xrightarrow{\text{alc KOH}} CH_3CH = CHCH_3 + CH_3CH_2CH = CH_2$$

#### 30. What is an asymmetric carbon?

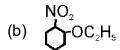
**Ans.** A carbon which is attached to four different atoms or groups is called asymmetric carbon e.g.

### Unit - VII

#### **ALCOHOLS, PHENOLS AND ETHERS**

- I. Select the correct answer from the choices given under each bit :
- 1. In allylic alcohol, the -OH group is attached to
  - (a) sp<sup>3</sup> hybridised carbon
  - (b) sp<sup>2</sup> hybridised carbon
  - (c) sp hybridised carbon
  - (d) None of these
- 2. In vinylic alcohol the -OH group is attached to
  - (a) sp<sup>3</sup> hybridised carbon
  - (b) sp<sup>2</sup> hybridised carbon
  - (c) sp hybridised carbon
  - (d) sp<sup>3</sup>d hybridised carbon
- 3. In phenol the -OH group is attached to
  - (a) sp<sup>3</sup> hybridized carbon
  - (b) sp<sup>2</sup> hybridized carbon
  - (c) sp hybridized carbon
  - (d) sp<sup>3</sup>d hybridized carbon
- $\begin{array}{c} {\rm CH_3} \\ {\rm I} \\ {\rm CH_3 C CH_2OH} \\ {\rm I} \\ {\rm CH_3} \end{array}$ 
  - (a) Primary alcohol
  - (b) Secondary alcohol
  - (c) Tertiary alcohol
  - (d) None of these

- 5. Identity which is allylic alcohol among the following
  - (a)  $CH_2 = CHOH$
  - (b)  $CH_2 = CH CH_2OH$
  - (c) HO-CH-CH<sub>3</sub>
  - (d) CH<sub>3</sub>CH<sub>2</sub>OH
- 6. IUPAC name of isobutyl alcohol is
  - (a) 2-methyl prepan-1-ol
  - (b) butan-2-ol
  - (c) Butan-1-ol
  - (d) 2-methyl propan-2-ol
- 7. 2-methyl propan-1-ol is a\_\_\_\_\_ alcohol.
  - (a) Primary
- (b) Secondary
- (c) Tertiary
- (d) None of these
- 8. 2-methyl phenol is a
  - (a) o-cresol
- (b) p-cresol
- (c) Resorcinol
- (d) Quinol
- 9. Catechol is
  - (a) Benzene 1, 2 diol
  - (b) Benzene 1, 3 diol
  - (c) Benzene 1, 4 diol
  - (d) None of these
- 10. Hydroquinone is
  - (a) Benzene 1, 4 diol
  - (b) 1-ethoxy propane
  - (c) Propoxy ethane
  - (d) 2-ethoxy butane


11. IUPAC

of

 $\mathsf{CH_3} - \mathsf{CH} - \mathsf{O} - \mathsf{CH_2} - \mathsf{CH_3}$ 

- (a) 2- ethoxy propane
- (b) 1- ethoxy propane
- propoxy ethane
- 2- ethoxy butane
- 12. The structure of 1-ethoxy-2-nitro cyclohexane is

(a) 
$$NO_2$$
  $OC_2H_1$ 



(a) 
$$NO_2$$
 (b)  $NO_2$  OC<sub>2</sub>H<sub>5</sub> (c)  $NO_2$  OC<sub>2</sub>H<sub>6</sub> (d)  $NO_2$  OC<sub>2</sub>H<sub>6</sub>

$$(d) \quad \begin{matrix} NO_2 \\ OC_2H_1 \end{matrix}$$

- 13.  $CH_3 CH = CH_2 + H_2O \xrightarrow{H+}$ product. The product is
  - (a) Propan-2-ol
  - (b) Propan-1-ol
  - (c) Butan-1-ol
  - (d) Butan-2-ol
- 14.  $CH_3 CH_2 COOH \xrightarrow{(i) LiAlH_4} \rightarrow$ product. The product is
  - (a) Butan-1-ol
  - (b) Propan-1-ol
  - (c) Propan-2-ol
  - (d) Butan-2-ol
- 15. Catalytic reduction of butanal gives
  - (a) Butan-2-ol
- (b) Butan-1-ol
- (c) Propan-2-ol (d) Propan-1-ol

The structure of the compound 16. formed by the reaction of propanone with methyl magnesium bromide followed by hydrolysis is

(a) 
$$CH_3 - CH_2 - CH_2 - CH_2OH$$

$$\begin{array}{c} & CH_3 \\ I \\ CH_3 - C - H \\ I \\ OH \end{array}$$

(c) 
$$H_3C - C - CH_3$$
 OH

$$\begin{array}{c} & \text{OH} \\ \text{I} \\ \text{H}_3\text{C}-\text{C}-\text{CH}_3 \\ \text{I} \\ \text{(d)} & \text{CH}_2 \\ \text{I} \\ \text{CH}_3 \end{array}$$

17. The structure of the product of the reaction

$$\begin{array}{c} \mathsf{CH_3} \mathsf{-} \mathsf{CH_2} \mathsf{-} \mathsf{CH_2} \mathsf{-} \mathsf{CHO} \frac{\mathsf{NaBH_4}}{\mathsf{I}} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

product is

$$\begin{array}{ccc} & \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH_2} \operatorname{OH} \\ & \operatorname{I} \\ & \operatorname{CH_3} \end{array}$$

$$\begin{array}{c} & \text{CH}_3 \\ \text{I} \\ \text{(b)} & \text{CH}_3 - \text{CH}_2 - \text{C} - \text{CH}_3 \\ \text{I} \\ \text{OH} \end{array}$$

(d) 
$$CH_3 - CH_2 - CH_2 - CH_2 - OH$$

18. CH₃ NaBH₄ product. The product is

(a) 
$$OH$$
  $CH_2OH$  (b)  $CH_3$ 

(a) 
$$OH_{CH_3}$$
 (b)  $CH_2OH_3$  (c)  $OH_2OH_3$  (d)  $OH_2OH_3$ 

19. the increasing order of the boiling points of

- Butan-1-ol (ii) Butan-2-ol (i)
- (iii) ethanal (iv) propan-1-ol
- (a) iii < ii < i < iv (b) iii < iv < ii < i
- (c) i < ii < iii < iv (d) iv < iii < ii < i

Which of the following alcohols, the least soluble alcohol in water is

- (a) n-butyl alcohol
- (b) Isobutyl alcohol
- (c) Tertiary butyl alcohol
- (d) Secondary butyl alcohol

21. The increasing order of boiling points

- pentan-1-ol (ii) n-butane (i)
- (iii) pentanal (iv) ethoxy ethane
- (a) ii < iv < iii < i (b) i < ii < iii < iv
- (c) iv < iii < ii < i (d) iv < ii < iii < i

The compound which is most acidic:-

- (a) phenol
- (b) p-nitro phenol
- (c) o-nitro phenol
- (d) m-nitro phenol

OH
23.  $NaOH \rightarrow A \xrightarrow{CO_2} B$ . The end product B is

- (a) Aspirin
- (b) Phenyl Acetate
- (c) Salicylic Acid
- Salicylaldehyde (d)

The acid strength of alcohol 24. decreases in the order

- (a) T > S > P
- (b) P > S > T
- (c) P>T>S (d) T>P>S

25. Ethyl Alcohol on heating with Conc H<sub>2</sub>SO<sub>4</sub> at 443K gives

- Methyl Alcohol (a)
- Methane (b)
- Ethane (c)
- (d) Ethene

26. The relative ease of dehydration of alcohols follows the following order

- (a) T>S>P (b) P>S>T
- (c) T > P > S (d) S > P > T

27.

product is

- (a) 2-methyl propene
- (b) propene
- (c) but-2-ene
- (d) but-1-ene

- 28. When phenol is treated with  $Br_2/H_2O$ , we get
  - (a) 2,4,6 tribromo phenol
  - (b) 2,4 dibromo phenol
  - (c) 2 bromo phenol
  - (d) 3 bromo phenol
- 29. On treatment with chloroform in presence of sodium hydroxide a CHO group is introduced in ortho position of benzene ring of phenol. The reaction is known as
  - (a) Reimer Tiemann reaction
  - (b) Kolbe's reaction
  - (c) Wurtz reaction
  - (d) Rosenmonds reaction
- 30. When phenol is treated with Zinc dust, we get
  - (a) n- hexane
- (b) cyclo hexane
- (c) Benzene
- (d) Toluene
- 31. Oxidation of phenol with chromic acid gives
  - (a) Benzene (b) Toluene
  - (c) Benzo quinone(d) Benzoic acid
- 32. Williamson's synthesis method is used for the preparation of
  - (a) alcohol
- (b) ether
- (c) ketone
- (d) aldehyde

- major product is
- (a) 2- methyl prop-1-ene
- (b) T- butyl ethyl ether
- (c) ethyl propyl ether
- (d) methyl butyl ether

34. 
$$HC_3 - C - ONa + CH_3Br - A$$
. The  $CH_3$ 

major product A is

(a) 
$$CH_3 - CH_3 - CH_$$

$$\begin{array}{cc} & CH_3 \\ I \\ CH_3 - C = CH_2 \end{array}$$

(c) 
$$CH_3 - CH_2 - O - CH_3$$

$$\begin{array}{ccc} & & & & CH_{3} \\ I & & I \\ C_{2}H_{5}O-C-CH_{3} \\ I & & I \\ H & & H \end{array}$$

The product A and B are

(a) 
$$CH_3OH$$
 and  $H_3C-C-I$   $I$   $CH_3$ 

(b) 
$$CH_3I$$
 and  $H_3C-C-OHI$   $I$   $CH_3$ 

(c) 
$$C_2H_5OH$$
 and  $CH_3-C-I$   $I$   $I$ 

(d) None of these

36. OCH<sub>3</sub> + CH<sub>3</sub>CI Anhyd AlCl<sub>3</sub>

#### reaction is known as

- (a) Friedel Craft's alkylation
- (b) Friedel Craft's acylation
- (c) Electrophilic substitution reaction
- (d) Diels Alder addition reaction
- 37. Phenol can be distinguished from ethyl alcohol by all reagents except
  - (a) NaOH
- (b) FeCl<sub>2</sub>
- (c)  $Br_2/H_2O$
- (d) Na
- 38. Aspirin is an acetylation product of
  - (a) p-Dihydroxy benzene
  - (b) o- Hydroxy benzoic acid
  - (c) o- Dihydroxy benzene
  - (d) m- Hydroxy benzoic acid
- 39. The compound A when treated with methyl alcohol and few drops of  $H_2SO_4$  gave smell of winter green. The compound A is
  - (a) succinic acid (b) salicylic acid
  - (c) tartaric acid (d) oxalic acid
- 40. Wood spirit is known as
  - (a) methanol
- (b) ethanol
- (c) acetone
- (d) benzene
- 41. Haloform reaction does not takes place with :
  - (a) Methanol
  - (b) Ethanol
  - (c) 2-Chloropropane
  - (d) Acetone

- 42. Which of the following compounds will be most readily attacked by an electrophile?
  - (a) Toluene
  - (b) Phenol
  - (c) Benzene
  - (d) Chlorobenzene
- 43. Give IUPAC name of the compound

- (a) 2-chloro-5-hydroxy hexane
- (b) 2-hydroxy-5-chloro hexane
- (c) 2-chlorohexa-5-ol
- (d) 5-chlorohexa-2-ol
- 44. Arrange the following compounds in the decreasing order of acid strength.

- (a) (ii) > (i) > (iii)
- (b) (ii) > (iii) > (i)
- (c) (iii) > (i) > (ii)
- (d) (iii) > (ii) > (i)
- 45. In the following compounds

(III) 
$$O_2$$
 (IV)  $O_2$ N- $O$ -OH

The order of acidity is:

- (a) |V > |I| > |I| (b) |V > |I| > |I| > |I|
- (c) I > II > IV > III (d) II > IV > I > II

#### 46. Which of the following will not Answer Keys soluble in sodium - bicarbonate? I. Select the correct answer 2, 4, 6 - trinitrophenol (a) from the choices given under (b) benzenesulphonic acid each bit: (c) benzoic acid 1. (a) 26. (a) (d) 0-nitrophenol 2. (b) 27. (a) 47. Phenol is heated with phthalic 3. (b) 28. (a) anhydride in presence of Conc. 4. (a) 29. (a) H<sub>2</sub>SO<sub>4</sub>. The product gives pink colour with alkali. The product is: 5. (b) 30. (c) Bakelite (a) 6. (a) 31. (c) (b) Salicylic acid 7. (a) 32. (b) Phenolphthalein (c) 8. (a) 33. (a) (d) Fluorescein 9. (a) 34. (a) 48. Benzylamine reacts with nitrous 10. (a) 35. (a) acid to form: 11. (a) 36. (a) (a) azobenzene 12. (b) 37. (b) benzyl alcohol (d) (c) phenol 13. (a) 38. (b) (d) benzene 14. (b) 39. (b) 49. When phenol is treated with CHCl, 15. (b) 40. (a) and NaOH, the product formed is: 16. (c) 41. (a) (a) Benzoic acid 17. (a) 42. (b) (b) Salicylic acid 18. (a) 43. (c) (c) Benzaldehyde 19. (b) 44. (a) Salicylaldehyde (d) 20. (a) 45. (a) 50. Williamson's synthesis is an 21. (a) 46. (d) example of: 22. (b) (a) Nucleophilic substitution reaction 47. (c) (b) Electrophilic substitution 23. (c) 48. (b) (c) Electrophilic addition 24. (b) 49. (d)

25. (d)

50. (a)

(d)

Nucleophilic addition

#### II. Short Questions

1. Arrange the following with their increasing order of basicity: H<sub>2</sub>O, OH<sup>-</sup>, CH<sub>3</sub>OH, CH<sub>3</sub>O<sup>-</sup>

**Ans.** H<sub>2</sub>O, CH<sub>3</sub>OH, OH<sup>-</sup>, CH<sub>3</sub>O<sup>-</sup>

2. Identify the organic product obtained in the following reaction

2, 3-dimethyl but-2-ene (major) 2,3 dimethyl but-1-ene (minor)

- 3. How will you know whether a given-OH group is alcoholic or phenolic in nature?
- **Ans.** Phenolic OH gives blue / violet colour with neutral FeCl<sub>3</sub> where as alcoholic OH does not.
- 4. Why boiling points of phenols are higher than those of corresponding aromatic hydrocarbons and alkyl halides ?

**Ans.** Because of H- bonding.

- 5. Alcohols react with halogen acids to form haloalkanes but phenols do not form halobenzenes. Explain.
- **Ans.** The C-O bond of phenols has some double bond character due to resonance hence can not easily cleaved by X<sup>-</sup> ion in presence of halogen acids but C-O bond in alcohols is a pure single bond and is cleaved easily with X<sup>-</sup> ions in presence of halogen acids to form haloalkanes.
- 6. Explain why anisole is less reactive than phenol towards electrophilic substitution reactions?
- **Ans.** OH and OCH<sub>3</sub> are both +R effect. The electrophilic substitution reaction mainly occur at o and p positions, but the aromatic ethers are less reactive than phenols.

#### 7. Why is phenol more acidic than ethanol?

**Ans.** After the loss of proton, phenoxide ion is stabilized by resonance while ethoxide ion is not.

#### 8. Write the equation involved in Reimer - Tiemann reaction.

Ans. Reimer - Tiemann Reaction:

When phenol is treated with chloroform in presence of aqueous NaOH (or KOH) at 340K followed by hydrolysis forms salicylaldehyde.

#### 9. Write the reaction of Williamson synthesis.

Ans. Williamson's Systhesis:

When alkyl halide is treated with sodium or potassium salt of alcohol or phenol forms ether.

$$CH_3 - Br + NaOC_2H_5 \longrightarrow CH_3OC_2H_5 + NaBr$$
  
Methyl Bromide Sodium Ethoxide Ethyl Methyl Ether

10. Complete the reaction  $\bigcirc$  +NaOH<sub>(aq)</sub>  $\longrightarrow$   $\longrightarrow$ 

Ans. 
$$CH_2CI$$
  $CH_2OH$ 

$$+ NaOH(aq) \xrightarrow{hydrolysis} O$$
Benzyl chloride Benzyl alcohol

11. Write the equation of Friedel - Crafts reaction of alkylation in anisole.

Ans. 
$$OCH_3$$
  $OCH_3$   $OCH_3$ 

#### 12. Why phenols do not undergo substitution of - OH group like alcohols?

Ans. See question No. 5.

- 13. Ortho-nitrophenol is more acidic than ortho-methoxy phenol. Give reason.
- **Ans.** Due to strong R and I effect of the -NO<sub>2</sub> group, electron density in the O-H bond decreases and hence the loss of proton becomes easy. After loss of proton, the orthonitro phenoxide ion is stabilized by resonance.

But in case of ortho methoxy phenol, the electron density in O - H bond increases, thereby making the loss of proton difficult. Further, the ortho - methoxy phenoxide ion is destabilized by resonance, thereby making o- methoxy phenol a weaker acid.

- 14. Why are higher ethers insoluble in water?
- **Ans.** Higher ethers are of bigger size and the oxygen atom fails to form inter molecular H-bonds with water. Hence higher ethers are insoluble in water.
- 15. Explain diethyl ether does not react with sodium.
- **Ans.** Diethyl ether has no active hydrogen attached to oxygen like alcohol and phenols, so it does not react with sodium.
- 16. Write the reaction products obtained when anisole is treated with a mixture of Conc HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>.

- 17. Explain how does the OH group attached to a carbon of benzene ring activates towards electrophilic substitution.
- **Ans.** Phenol has +R effect of OH group. The electron density of benzene ring increases and facilitate the attack of a electrophile. So presence of OH group activates the benzene ring towards electrophilic substitution mainly at o and p positions.
- 18. Write the chemical reaction when 1-propanol reacts with acidified  $KMnO_4$  solution.

**Ans.** 
$$CH_3 - CH_2 - CH_2OH + 2[O] \xrightarrow{Acidic KMnO_4} CH_3CH_2COOH + H_2O$$
  
Propan - I - ol Propanoic acid

- 19. Nitration of phenol gives ortho and para products only. Give reasons.
- Ans. See question No. 6

- 20. Describe the test to distinguish between primary, secondary and tertiary alcohols.
- **Ans.** When alcohols are treated with equimolar mixture of conc HCl and anhy ZnCl<sub>2</sub> at room temp., if turbidy appears immediately, the alcohol is tertiary. If no trubidy, it is primary alcohol. If turbidity appears after sometime, it is secondary alcohol.
- 21. Write the structure of the product of the following reaction.

$$CH_3 - CH = CH_2 - \frac{H_2O/H^+}{}$$

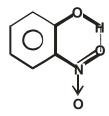
Ans. 
$$CH_3 - CH = CH_2 - \frac{H_2O/H^+}{C} + \frac{C}{C} + \frac{C$$

- 22. Why n-Hexanol is not soluble in water?
- **Ans.** In n-Hexanol, alkyl group is quite large. As a result it resembles the hydrocarbons more closely and is not soluble in water. The formation of H-bonding between n-Hexanol and water is very less.
- 23. Between ethanol and water which is stronger acid and why?
- Ans. Water is stronger aid than ethanol.

$$C_2H_5OH$$
  $\xrightarrow{H_2O}$   $C_2H_5 \rightarrow O^- + H_3O^+$   
ethoxide ion

$$H_2O + H_2O \rightarrow H - O^- + H_3O^+$$
  
Hydroxids ion

Ethoxide ion is less stable than hydroxide ion due to concentration of negative charge on oxygen due to electron releasing inductive effect of ethyl group. Hence equilibrium in second equation is more in forward direction producing more H<sub>3</sub>O<sup>+</sup> ions.


- 24. Name the reagents used for oxidation reaction of a primary alcohol to carboxylic acid.
- **Ans.** The reagent is acidfied  $KMnO_4/K_2Cr_2O_7$  solution.

#### 25. Why phenols do not give protonation reactions readily?

**Ans.** In phenol, the lone pair of oxygen is shared with benzene ring through resonane. So, the electron density around oxygen is relatively less and therefore, phenols do not undergo protonation readily.

#### 26. Why O-nitrophenol is less soluble is water than P-nitro phenol?

**Ans.** In O-nitrophenol, there is intramolecular hydrogen bonding. This inhibits its hydrogen bonding with water and reduces its solubility in water.



#### 27. Why phenols do not undergo substitution of - OH group like alchols?

**Ans.** C-OH bond in phenol has partial double bond character due to resonance. Hence, this bond is stronger and difficult to cleave. Also, phenols do not undergo substitution of -OH group like alcohols. In alcohols C-OH bond is pure single bond and therefore can be cleaved relatively easily.

#### 28. Why phenol has smaller dipole moment than methanol?

**Ans.** In phenol, the electron withdrawing inductive effect of oxygen is opposed by electron releasing resonance effect. So, phenol has smaler dipole moment. But in case of methanol only electron withdrawing inductive effect is operative. So, it has higher dipole moment.

# 29. Anhydrous CaCl<sub>2</sub> is not recommended as a drying agent for alcohols and amines why?

**Ans.** Alcohols and amines cambine with anhydrous  $CaCl_2$  to form complexes eg. with  $C_2H_5OH$ , it gives a complex of molecular formula  $CaCl_2$ .  $3C_2H_5OH$ .

#### 30. Why are higher ethers insoluble in water?

**Ans.** Becasue of bigger size of alkyl groups, the oxygen atom in ethers fails to form intermolecular H-bonds with water.

\*\*\*

### 10. The starting material for Stephen's method for the formation of an aldehyde is

- (a) Acid chloride
- (b) Acid amide
- (c) Alkyl halide
- (d) Alkyl cyanide

#### 11. When acetonitril is subjected to Stephen's reaction, the final product formed is

- (a) CH<sub>3</sub>CH<sub>2</sub>OH (b) CH<sub>3</sub>CHO
- (c) HCHO
- (d) CH<sub>3</sub>COCH<sub>3</sub>

### 12. Which one of the compounds contain no $\alpha$ - Hydrogen atom ?

- (a) Acetaldehyde
- (b) Acetone
- (c) Acetic Acid
- (d) Formal dehyde

#### 13. Which one of the compound does not contain $\alpha$ - carbon atom ?

- (a) CH<sub>2</sub>CH<sub>2</sub>CHO
- (b) HCHO
- (c) CH<sub>2</sub>COCH<sub>3</sub>
- (d) CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub>

#### 14. Which one of the compounds contain $\alpha$ - C atom but no $\alpha$ - H atom?



- (b) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO
- (c) CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub>
- (d) HCHO

#### 15. An example of the compound which has no $\alpha$ - H atom but contain $\alpha$ - carbon atom.

CH<sub>3</sub>CH<sub>2</sub>CHO

$$\begin{array}{c} & \text{CH}_3\\ \text{I}\\ \text{(b)} & \text{CH}_3-\text{C}-\text{CHO}\\ \text{I}\\ \text{CH}_3 \end{array}$$

- **HCHO** (c)
- CH<sub>2</sub>CH<sub>2</sub>COCH<sub>3</sub> (d)

#### 16. Why aldehydes and ketones undergo nucleophilic addition reaction?

- (a) Due to greater electronegativity of oxygen, the carbon atom of carbonyl group developes positive charge and act a nucleophile
- (b) Due to greater electronegativity of oxygen, the oxygen atom developes slight positive charge for nucleophilic reaction.
- There is a cleavage of C = O gr. (c) to form a carbanion ion for the nucleophilic reaction.
- (d) None of the above

### 17. Which of the compound reduces Fehling's solution?

- (a) CH<sub>3</sub>COCH<sub>3</sub>
- (b) CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub>
- (c) CH<sub>3</sub>CHO
- CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub>

#### 18. Which one of the followings is not the composition of Fehling-B solution?

- (a) NaOH + Na, K- tartarate
- (b) KOH + Na, K- tartarate
- (c) NH<sub>4</sub>OH + Na, K- tartarate
- (d) Ca(OH)<sub>3</sub> + Na, K- tartarate

- 19. When ethanol and propanal mixture is subjected to Aldol condensation, the number of products formed are
  - (a) One
- (b) Two
- (c) Three
- (d) Four
- 20. When formal dehyde is subjected to Cannizzaro's reaction using Conc NaOH, the products formed
  - (a) Methanol and formic acid
  - (b) Methanol and sodium formate
  - (c) Ethanol and formic acid
  - (d) Ethanol and sodium formate
- 21. When the mixture of HCHO and  $C_6H_5$ CHO is subjected to Cannizzaro's reaction, the products formed are
  - (a) Methanol and benzyl alcohol
  - (b) Sodium formate and benzyl alcohol
  - (c) Methanol and sodium benzoate
  - (d) Sodium methoxide and sodium benzoate
- 22. When benzaldehyde is treated with NH<sub>3</sub>, the product formed is
  - (a) Urotropine
  - (b) Hydrobenzamide
  - (c) Hydrazone derivative of benzal dehyde
  - (d) Semicarbazone derivative of benzal dehyde
- 23. When formaldehyde is treated with NH<sub>3</sub>, the product formed is
  - (a) Urotropine
  - (b) Hydrobenzamide
  - (c) Formamide
  - (d) Acetamide

### 24. Which of the following will respond iodoform test?

- (a) Butanone
- (b) Formaldehyde
- (c) Pentan-3-one
- (d) Hexan-3-one

# 25. When benzal dehyde is treated with acetic anhydride and sodium acetate, the product formed is

- (a) Benzoic acid
- (b) Sodium benzoate
- (c) Cinnamic acid
- (d) Propanoic acid

## 26. When benzal dehyde is refluxed with KCN, the product is

- (a) Benzoic acid
- (b) Benzoin
- (c) Phthalic acid
- (d) Potassium benzoate

## 27. The starting material and final product of Etard's reaction are

- (a) Benzene and benzal dehyde
- (b) Benzene and benzoic acid
- (c) Toluene and benzal dehyde
- (d) Toluene and benzoic acid

# 28. The starting material and final product of Gattermann - Koch reaction are

- (a) Toluene and benzal dehyde
- (b) Toluene and benzoic acid
- (c) Benzene and benzoic acid
- (d) Benzene and benzal dehyde

#### 29. The correct order of acid strength is

- (a) CICH<sub>2</sub>COOH > CI<sub>2</sub>CHCOOH > CI<sub>3</sub>CCOOH > CH<sub>3</sub>COOH
- (b) CI<sub>3</sub>CCOOH > CI<sub>2</sub>CHCOOH > CICH<sub>2</sub>COOH > CH<sub>3</sub>COOH
- (c) CH<sub>3</sub>COOH > CICH<sub>2</sub>COOH > CI<sub>2</sub>CHCOOH > CI<sub>3</sub>CCOOH
- (d) CI<sub>2</sub>CHCOOH > CICH<sub>2</sub>COOH > CI<sub>3</sub>CCOOH > CH<sub>3</sub>COOH

#### 30. The correct order of acid strength is

- (a) FCH<sub>2</sub>COOH > CICH<sub>2</sub>COOH > BrCH<sub>2</sub>COOH > ICH<sub>2</sub>COOH
- (b) CICH<sub>2</sub>COOH > FCH<sub>2</sub>COOH > BrCH<sub>2</sub>COOH > ICH<sub>2</sub>COOH
- (c) ICH<sub>2</sub>COOH > BrCH<sub>2</sub>COOH > FCH<sub>2</sub>COOH > CICH<sub>2</sub>COOH
- (d) FCH<sub>2</sub>COOH < CICH<sub>2</sub>COOH < BrCH<sub>2</sub>COOH < ICH<sub>2</sub>COOH

#### 31. The correct order of acid strength is

- (a)  $HCOOH > CH_3COOH > CICH_2COOH$
- (b) CH<sub>3</sub>COOH > HCOOH > CICH<sub>2</sub>COOH
- (c) CICH<sub>2</sub>COOH > HCOOH > CH<sub>3</sub>COOH
- (d) CICH<sub>2</sub>COOH > CH<sub>3</sub>COOH > HCOOH

# 32. When ethyl benzene is oxidised by SeO<sub>2</sub>, the product formed

- (a) Benzoic acid
- (b) Salicylic acid
- (c) Phthalic acid
- (d) Benzaldehyde

## 33. When ortho xylene is oxidised by SeO<sub>2</sub>, the product formed is

- (a) Benzoic acid
- (b) Pthalic acid
- (c) Tere phthalic acid
- (d) Isophthalic acid

### 34. During essterification, the reagent used is

- (a) Dil NaOH (b) Dil KoH
- (c) Conc H<sub>2</sub>SO<sub>4</sub> (d) Conc Alkali

# 35. Which of the following acid reduces Fehling's solution or Tollen's reagent?

- (a) CH<sub>3</sub>COOH
- (b) CH<sub>2</sub>CH<sub>2</sub>COOH
- (c) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH
- (d) HCOOH

### 36. During Clemmenson's reduction process

- (a) >C=0 group is converted to CH<sub>2</sub>OH
- (b) >C=0 group is converted to>CH₂ group
- (c) >C=0 group is converted to >CHOH
- (d) >C=0 group is converted to -COOH

# 37. Component 'A' of formula $C_5H_{10}O$ form oxime and give negative silver mirror test and iodoform test. Component 'A' is

- (a) Pentan-2-one
- (b) Pentanal
- (c) Pentan-3-one
- (d) 2- methyl butanal

# 38. Cyclohexanone is reduced by NaBH<sub>4</sub>. The product formed is

- (a) Cyclohexane
- (b) Cyclohexanal
- (c) Cyclohexadiene
- (d) Oyclohexanol

# 39. From the following acids, the one which is optically active?

(a) Benzoic acid

(b)

- (c) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH
- (d) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH

## 40. Which one the following is not a derivative of carboxylic acid?

- (a) RCOOR'
- (b) RCONH<sub>2</sub>
- (c) RCOCI
- (d) R-NH<sub>2</sub>

# 41. Wolf-Kishner Reduction of acetaledehyde gives

- (a) Propanone
- (b) Acetone
- (c) Alkane
- (d) Butanaoe

# 42. Hell-Volhard-Zelinsky (HVZ) reaction of acetic acid gives

- (a) Acetaldehyde
- (b) Propanone
- (c) Trichloro acetic acid
- (d) Butanone

# 43. Which of the following reactions is responded by HCHO?

- (a) Cannizzaro's reaction
- (b) Clemmenson's reaction
- (c) Haloform reaction
- (d) Aldol condensation

# 44. In aldehyde and ketone, the carbonylic carbon atom is

- (a) sp<sup>3</sup> hybridized
- (b) sp<sup>2</sup> hybridised
- (c) sp-hybridized
- (d) unhybirdsed

#### 45. Schiff's reagent is

- (a) Magneta solution decolorised by SO<sub>2</sub>
- (b) Magneta solution decolorised by Cl<sub>2</sub>
- (c) Ammoniacal cobalt chloride solution
- (d) Ammoniacal manganese sulphate solution

# 46. Which of the following organic compounds are second oxidation product of alkanes?

- (a) 10 and 20 alcohols
- (b) carboxylic acids and esters
- (c) 2º and 3º alcohols
- (d) aldehydes and ketones

#### 47. Phenones are

- (a) Aldehydes in which carbonyl group is attached to the benzene ring
- (b) Ketones in which carbonyl group is attached to the benzene ring
- (c) Aldehydes in which carbonyl group is attached to the alkyl group
- (d) Acids in which carbonyl group is attached to the benzene ring

# 48. During the Claisen's condensation, ethyl ethanoate gives

- (a) Ethanoic acid
- (b) Propanoic acid
- (c) Butanoic acid
- (d) Ethyl-3-Keto butanoate

## 49. Kolbe's electrolysis of potassium propanoate gives

- (a) Ethane
- (b) Propane
- (c) Butane
- (d) Pentane

### 50. The reagent used during claisen condensation is

- (a) Sodium ethoxide
- (b) NaOH
- (c) KOH
- (d) Br<sub>2</sub> and alkali

# 51. (i) CH<sub>3</sub>COCH<sub>3</sub> — A CH<sub>3</sub> - CH-CH<sub>3</sub> I OH

- (ii)  $C_6H_5CH_2CH_3 \xrightarrow{B} C_6H_5COOH$ In the obove reactions A and B are
- (a) LiAlH, and NaBH,
- (b) LiAlH<sub>4</sub> and SeO<sub>2</sub>
- (c) Acidified KMnO<sub>4</sub> and SeO<sub>2</sub>
- (d) Acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> and LiAlH<sub>4</sub>

## 52. Aldehyde and Ketone can be distinguished by :

- (a) Benedicts solution
- (b) H<sub>2</sub>SO<sub>4</sub> solution
- (c) KMnO<sub>4</sub>-/OH-
- (d) NH<sub>3</sub>

# 53. Aldehydes react with alcohols in the presence of dry HCl gas to form acetals. This reaction is an example of

- (a) nucleophilic substitution
- (b) nucleophilic addition
- (c) electrophlic substitution
- (d) electrophilic addition

## 54. Formaldehyde, on heating with potassium hydroxides, gives :

- (a) Methyl alcohol
- (b) Ethyl formate
- (c) Methane
- (d) Acetylene

## 55. The reaction of phenyl acetate O- and P-hydroxy acetophenone

- (a) Beckmann's rearrangement
- (b) Fries rearrangement
- (c) Friedel's Craft reaction
- (d) Reimer Tiemann reaction

# 56. Which of the following gives aldol condensation?

- (a) Propionaldehyde
- (b) Formaldehyde
- (c) Benzaldehyde
- (d) None of these

# 57. Acetaldehyde and acetone can be distinguished by :

- (a) Bromoform test
- (b) Solubility in water
- (c) Tollen's reagent
- (d) Molish test

- 58. Which of the following does not give brick red precipitate with Fehling's solution?
  - (a) Acetaldehyde (b) Formalin
  - (c) D-glucose (d) Acetone
- 59. In Etard's reaction toluene is oxidised to benzaldehyde using
  - (a)  $H_2O_2$
  - (b) Cl<sub>2</sub>
  - (c) Chromyl Chloride (CrO<sub>2</sub>Cl<sub>2</sub>)
  - (d) KMnO<sub>4</sub>

- 60. Which of the following can not reduce Fehling solution?
  - (a) Formic acid
  - (b) Acetic acid
  - (c) Formaldehyde
  - (d) Acetaldehyde
- 61. Acid present in tomatoes is
  - (a) Lactice acid
  - (b) Citric acid
  - (c) Tantaric acid
  - (d) Oxalic acid

### Answer Keys

- I. Select the correct answer from the choices given under each bit :
- 1. (a)
  - a) 17. (
- 0 (1)

(c)

2.

- 3. (d)
- 4. (b)
- 5. (d)
- 6. (c)
- 7. (b)
- 8. (b)
- 9. (a)
- ( )
- 10. (d)
- 11. (b)
- 12. (d)
- 13. (b)
- 14. (a)
- 15. (b)
- 16. (a)

- 17. (c)
- 18. (c)
- 19. (d)
- 10. (u)
- 20. (b)
- 21. (b)
- 22. (b)
- 23. (a)
- 04 (-)
- 24. (a)
- 25. (c)
- 26. (b)
- 27. (c)
- 28. (d)
- 20 (b)
- 29. (b)
- 30. (a)
- 31. (c)
- 32. (a)

- 33. (b)
- 34. (c)
- 35. (d)
- 36. (b)
- 37. (c)
- 38. (d)
- 39. (b)
- 40. (d)
- 41. (c)
- 42. (c)
- 43. (a)
- 44. (b)
- 44. (b)
- 45. (a)
- 46. (d)
- 47. (b)
- 48. (d)

- 49. (c)
- 50. (a)
- 51. (b)
- 52. (a)
- 53. (b)
- 54. (a)
- 55. (c)
- 56. (a)
- 57. (c)
- 58. (d)
- 59. (c)
- 60. (b)
- 61. (d)

#### II. Short Questions

#### Q1. What is Carbonyl group?

**Ans:** It is carbon-oxygen double bond, represented as  $\rangle C = 0$ 

Q2. Write IUPAC names of 
$$O_{2N}$$
  $O_{CHO}$ ,  $CH_3 - C - CH_2CH_3$  and  $CH_3 - C - COOH$ .

4-Nitrobenzene- butan-2-one 2-bromopropanoic acid carbaldehyde,

#### Q3. What is Gattermann-Koch reaction?

Ans: When a mixture of CO and HCI is passed through a solution of benzene or toluene in nitrobenzene at 323 K in presence of AlCl<sub>3</sub> and CuCl, benzaldehyde or p-tolualdehyde is formed.

$$\mathsf{CO} + \mathsf{HCI} \to [\mathsf{HCOCI}]$$

formylchloride

#### Q4. Why are aldehydes more reactive than Ketones?

Ans: The +ve charge on carbon atom of aldehye is more due to smaller +I effect of one alkyl group than ketones of two alkyl groups. As a result nucleophilic addition reactions occur more readily. And due to presence of H atom on carbonyl group of aldehyde is readily oxidized, as a result aldehydes act as reducing agent and reduce Tollen's reagent, Fehling's solution etc.

#### Q5. What is Fehling's solution?

**Ans:** Alkaline solution of CuSO<sub>4</sub> and sodium potassium tartarate mixture solution.

#### Q6. Why carboxylic acids do not give the characteristic reactions of carbonyl group?

**Ans:** Due to lone pair of electrons on oxygen atom of OH group, exhibit resonance hybrid structures.

$$\begin{array}{ccc}
 & O & O^{-} \\
 & | V & | & \downarrow \\
 & R - C - O - H & & R - C = O^{+} - H
\end{array}$$

Similarly carbonyl group of aldehydes and ketones may be regarded as resonance hybrid structure

$$C = O \longrightarrow C - O$$

Thus Carbonyl group acts as electrophile. So carboxylic group is less electrophilic than aldehydes and ketonee. So nucleophilic addition reaction takes place.

#### 7. Write Rosenmund's reaction.

**Ans:** Acid chlorides are reduced to corresponding aldehydes by passing H<sub>2</sub> gas in presence of Pd and BaSO<sub>4</sub>.

$$\begin{array}{c} O \\ II \\ R-C-CI+H_2 \end{array} \xrightarrow{Pd/BaSO_4} \begin{array}{c} O \\ II \\ R-C \\ H \end{array} + HCI$$

### 8. Which type of aldehydes undergo cannizzaro's reaction?

Ans: The aromatic or aliphatic aldehydes which do not contain  $\alpha$ -hydrogens undergo cannizzaro's reaction.

### 9. Which alkenes on reductive ozonolysis gives acetone as the only product?

Ans: 
$$\begin{array}{ccccccc} & CH_{_3} & CH_{_3} & & (i) O_{_3}, CH_{_2}CI_{_2} & O \\ & I & I & & \underline{& 196K} & II \\ CH_{_3} - C = C - CH_{_3} & & (ii) Zn/H_{_2}O & 2CH_{_3} - C - CH_{_3} \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

#### 10. How do you test aldehydes and ketones with

- (a) Tollen's reagent
- (b) Fehling's solution

**Ans:** (a) 
$$RCHO + 2[Ag(NH_3)_2]^+ + 3OH^- \rightarrow RCOO^- + 2Ag + 4NH_3 + 2H_2O$$
 (silver mirror)

(b) 
$$RCHO + 2Cu^{2+} + 5OH^{-} \rightarrow RCOO^{-} + Cu_{2}O + 3H_{2}O$$
  
red ppt

#### 11. How will you convert acetone into ethanoic acid?

Ans: 
$$\begin{array}{c} O \\ II \\ CH_3 - C - CH_3 + 4[O] \end{array} \frac{\Delta}{(ii) \ H^+/H_2O} CH_3COOH + CO_2 + H_2O$$

#### 12. How will you distinguish between ethanal and propanal?

Ans: Ethanal (CH $_3$ CHO) contain  ${\rm CH}_3-{\rm C}$  gr which reacts with I $_2$ /NaOH forming iodoform

$$CH_3CHO + 3 NaOI \xrightarrow{\Delta} CHI_3 + HCOONa + 2NaOH$$
 (lodoform)

Where as proponal (CH<sub>3</sub> - CH<sub>2</sub> - CHO) does not contain CH<sub>3</sub>CO group and does not give iodoform test.

#### 13. Why does benzoic acid not undergo Friedel - Craft reaction?

**Ans:** Due to presence of deactivated electron withdrawing - COOH gr and AlCl<sub>3</sub> gets bonded with - COOH group.

#### 14. How methanoic acid differs from ethanoic acid? Write the chemical reactions.

Ans: Methanoic acid acts as a reducing agent and decolorises acidified KMnO<sub>4</sub> soln, where as acetic acid does not.

$$5HCOOH + KMnO_4 + 3H_2SO_4$$
  $= 5CO_2 + K_2SO_4 + 2MnSO_4 + 8H_2O$  (Colourless)

 ${\rm CH_3COOH} \ \_ \ _{\rm ^{H_2SO_4/KMnO_4}}$  No change in Pink colour

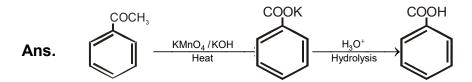
#### 15. Why HCOOH does not give HVZ reaction but CH, COOH does?

**Ans:** CH<sub>3</sub>COOH contains  $\alpha$  - Hydrogen atom hence gives HVZ reaction but HCOOH does not contain any  $\alpha$  - Hydrogen atom hence does not give HVZ reaction.

- 16. Write the structures of the following compounds?
  - (i) 3-hydroxy butanal
- (ii) 4-Fluorocetophenone

Ans: (i) 3-hydroxy butanal : 
$$CH_3 - CH - CH_2 - CHO$$
4 3 2 1

17. Write the structure of the product of the following reaction:


$$+ C_2H_5COCI \xrightarrow{anhy\ AlCl_3} CS_2 \rightarrow$$

ethylphenyl ketone

18. Which reagent can be used to separate ethanol from the mixture of ethanal, carbon tetrachloride and ethanol?

Ans. NaHSO<sub>3</sub>

19. How will you prepare benzoic acid from acetophenone?



Acetophenone

Potassiumbenzoate

Benzoic acid

- 20. What is meant by Cyanohydrin and hemiacetal?
- **Ans.** Cyanohydrin: It is a compound which contains both OH and CN group. On hydrolysis of it, lactic acid is obtained.

$$\begin{array}{ccc} & \text{OH} & & \text{OH} \\ \text{I} & \text{I} & \text{I} \\ \text{H}_{3}\text{C}-\text{CH}-\text{CN} & & \text{CH}_{3}-\text{CH}-\text{COOH} \end{array}$$

Cyanotrydria

lactic acid

**Hemiacetal:** It is a compound which contains an ether and alcohol group. eg., methoxy ethanol.

#### 21. How can alcohol and carboxylic acid be distinguished?

**Ans.** By NaHCO<sub>3</sub> test, carboxylic acid gives effervescence of CO<sub>2</sub> gas where as alcohol does not give.

#### 22. Why does benzoic acid not undergo Firedel Craft reaction?

**Ans.** Due to deactivation of benzene ring by electron withdrawing effect of - COOH group and also -COOH gr is bonded with AlCl<sub>3</sub> which does not favour Friedel Craft reaction.

#### 23. What is Tollen's reagent?

**Ans.** Tollen's reagent is ammoniacal silvernitrate solution.

$$[Ag(NH_3)_2]^+NO_3^-$$

#### 24. What is the Chemical name of Rochelle salt?

**Ans.** Sodium potassium tartarate : NaOOCCH(OH)CH(OH)COOK.

#### 25. How benzephenone is prepared from benzene?

**Ans.** On Friedel Craft acylation reaction of benzene with benzoyl Chloride in presence of anhydrous AlCl<sub>3</sub>.

### UNIT - IX

### **AMINIES AND DIAZONIUM SALTS**

- Select the correct answer from the choices given under each bit : I.
- 1. The IUPAC name of Isopropyl amine is:
  - Propan-1-amine (a)
  - Propan-2-amine (b)
  - Ethanamine (c)
  - N-methyl ehthanamine (d)
- 2. The common name of 2-methyl aniline is
  - (a) Toluene
- (b) o-toluidine
- (c) m-toluidine
- p-toluidine (d)
- 3. Among the following which is tertiary amine?

(a) 
$$NH_2$$

(b) 
$$N(CH_3)_2$$

- C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub> (c)
- $(C_{2}H_{5})_{2}NH$ (d)
- NO<sub>2</sub> product. The

#### product is

- (a) Aniline
- (b) Toluene
- (c) Benzene dichloride
- (d) phenol

- $CH_3CONH_2 \xrightarrow{LIAIH_4} product$ 5.
  - (a) CH<sub>3</sub>CN
  - (b) CH<sub>3</sub>COCH<sub>2</sub>NH<sub>2</sub>
  - (c) CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>
  - (d) CH<sub>3</sub>NH<sub>2</sub>
- 6. The correct decreasing order of basic character among the following NH<sub>3</sub>, CH<sub>3</sub>NH<sub>2</sub>, (CH<sub>3</sub>)<sub>2</sub>NH, (CH<sub>3</sub>)<sub>3</sub>N is
  - (a)  $(CH_2)_2NH > CH_2NH_2 > (CH_2)_2N > NH_2$
  - (b)  $(CH_3)_3N > (CH_3)_3NH > CH_3NH_2 > NH_3$
  - (c)  $CH_3NH_3 > (CH_3)_3NH > NH_3 > (CH_3)_3N$
  - (d)  $NH_3 > (CH_3)_3N > CH_3NH_3 > (CH_3)_3NH$
- What is the product of the reaction? 7.

- (a) 2-bromo aniline
- 3-bromo aniline (b)
- (c) 4-bromoaniline
- (d) 2.4.6- tribromo aniline
- Which of the following will give 8. N, gas on treatment with HNO, (NaNO<sub>2</sub> + HCI)?
  - (a)  $C_2H_5NH_2$  (b)  $CH_3NH_2$
- - (c) (CH<sub>3</sub>)<sub>2</sub>CH-NH<sub>2</sub>(d) all of these

#### 9. Which will not undergo diazotisation?

- (a)  $C_6H_5NH_2$  (b)  $C_2H_5NH_2$
- (c)  $H_2N$   $C_6H_4$  (d)  $C_6H_4$   $C_2H_2$

### 10. A positive carbylamines test is given by

- (a) N, N-dimethyl aniline
- (b) 2,4- dimethyl aniline
- (c) N-methyl benzylamine
- (d) N-ethyl aniline

### The correct decreasing order of base strength in gas phase:

- (a)  $(C_2H_2)_3N > (C_2H_2)_2NH > C_2H_2NH_2 > NH_3$
- (b)  $NH_3 > C_2H_5NH_2 > (C_2H_5)_2NH > (C_2H_5)_3N$
- (c)  $C_2H_2NH_2 > NH_3 > (C_2H_2)_2NH > (C_2H_2)_2N$
- (d)  $(C_2H_2)_2NH > (C_2H_2)_3N > C_2H_2NH_2 > NH_3$

### 12. A-mixture of 1°, 2° and 3° amines can be separated by Hinsberg's reagent which is

- (a) Benzoyl Chloride
- (b) Acetyl Chloride
- (c) Benzosulphonyl Chloride
- (d) Benzyl Chloride

### Reduction of benzene diazonium chloride with Zn/HCI gives

- (a) Aniline
- (b) Phenyl hydrazine
- Benzyl Alcohol (c)
- (d) Anisole

### 14. Gabriel Phthalimide reaction is used for the preparation of

- (a) Primary aromatic amines
- (b) Secondary amines
- (c) Aliphatic primary amines
- (d) Tertiary amines

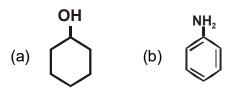
### 15. Which of the following compounds gives dye test?

- (a) Aniline
- (b) Methyl amine
- Diphenyl amine (c)
- Ethylamine (d)

#### 16. The amine that does not react with acetyl chloride is

- (a) CH<sub>2</sub>NH<sub>2</sub>
- (b) (CH<sub>3</sub>)<sub>2</sub> NH
- (c)  $(CH_3)_3N$
- (d) None of these

### 17. Benzene diazonium chloride is reduced to benzene by


- (a) Phosphorous Acid
- (b) Hypo phosphorous Acid
- Hypo phosphoric Acid (c)
- (d) Phosphine

#### 18. Which of the following is most basic?

- (a) aniline
- (b) p-nitro aniline
- p-methyl aniline (c)
- (d) benzyl amine

- 19. Which of the following on reduction with LiAlH<sub>4</sub> yields a secondary amine?
  - (a) Methyl cyanide
  - (b) Nitro ethane
  - (c) Methyl isocyanide
  - (d) Acetamide
- 20. Which of the following compound will dissolve in an alkali solution after it undergoes reaction with Hinsberg's reagent?
  - (a)  $CH_3NH_2$
  - (b)  $(CH_3)_3N$
  - (c)  $(C_2H_5)_2NH$
  - (d)  $C_6H_5NHC_6H_5$
- 21. Which of the following gives yellow oily liquid with nitrous acid?
  - (a) Methylamine
  - (b) Aniline
  - (c) Dimethyl amine
  - (d) Trimethyl amine
- 22. The amine which will not liberate nitrogen on reaction with nitrous acid is
  - (a) trimethyl amine
  - (b) ethyl amine
  - (c) t-butyl amine
  - (d) isopropyl amine

23. Which of the following is the weakest Bronsted base?



- (c)  $CH_3NH_2$  (d) -NH
- 24. Which of the following forms a stable diazonium salt at 273-278 K?
  - (a) Ethyl amine
  - (b) Dimethylanine
  - (c) Benzyl amine
  - (d) Aniline
- 25. Which of the following reagents can not be a good choice for reducing nitrobenzene to an amine?
  - (a) Sn/HCl
  - (b) Fe/HCI
  - (c) LiAlH<sub>4</sub> in ether
  - (d)  $H_2/Ni$
- 26. In order to prepare a CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> from CH<sub>3</sub>Br, the reagnet used as source of nitrogen is :
  - (a) Sodamide (NaNH<sub>2</sub>)
  - (b) Sodium azide (NaN<sub>3</sub>)
  - (c) Potassium Cyanide (KCN)
  - (d) Potassium phthalimide

| 27. | In Gabriel synthesis of amines 30. which reagent becomes source of nitrogen: |          |         |      |          |     |      |                                                             | Reduction of benzene diozonium chloride with Zn/HCl gives  (a) Aniline |                                      |            |          |        |            |
|-----|------------------------------------------------------------------------------|----------|---------|------|----------|-----|------|-------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|------------|----------|--------|------------|
|     | (a)                                                                          | Sodium   | nitrite | 9    |          |     |      |                                                             | (b)                                                                    | Ph                                   | enyl hyd   | Irazine  |        |            |
|     | (b)                                                                          | Sodium   | azide   | 9    |          |     |      |                                                             | (c)                                                                    | Az                                   | obenzer    | ne       |        |            |
|     | (c)                                                                          | Potassiı | ım cy   | anid | е        |     |      |                                                             | (d)                                                                    | Ну                                   | drozobo    | nzene    |        |            |
|     | (d) Potassium phthalimide                                                    |          |         |      |          | ;   | 31.  | When benzene diazonium Chloride is warmed with methanol the |                                                                        |                                      |            |          |        |            |
| 28. | The gas evolved in the reaction of                                           |          |         |      |          |     |      |                                                             |                                                                        | product formed is :                  |            |          |        |            |
|     | methyl amine with nitrous acid is :                                          |          |         |      |          |     |      |                                                             | (a)                                                                    | bei                                  | nzene      | (b)      | benz   | zenol      |
|     | (a)                                                                          | $NH_3$   |         | (b)  | $C_2H_6$ |     |      |                                                             | (c)                                                                    | bei                                  | nzyl alco  | hol (d)  | anis   | ole        |
|     | (c)                                                                          | $N_2$    |         | (d)  | $H_2$    |     | ;    | 32.                                                         | Which of the following diazonic salt is most stable?                   |                                      |            |          |        | azonium    |
| 29. | Primary amine and acid anhydride                                             |          |         |      |          |     |      |                                                             | (a)                                                                    | p-r                                  | nitrobenz  | zenediaz | zoniur | n chloride |
|     | react to form :                                                              |          |         |      |          |     |      |                                                             | (b)                                                                    | , .<br>) 2-4-dinitrobenzenediazoniun |            |          |        |            |
|     | (a)                                                                          | amide    |         |      |          |     |      |                                                             |                                                                        | chl                                  | oride      |          |        |            |
|     | (b)                                                                          | imide    |         |      |          |     |      |                                                             | (c)                                                                    | 2,4                                  | l,6-trinit | robenze  | ene d  | iazonium   |
|     | (c)                                                                          |          |         |      |          |     |      |                                                             | chlorids                                                               |                                      |            |          |        |            |
|     | (d)                                                                          |          |         |      |          |     | (d)  | (d) p-methoxybenzenediazoniun<br>chloride                   |                                                                        |                                      |            |          |        |            |
|     |                                                                              |          |         |      | A        | NSW | ER   | Ke                                                          | YS                                                                     |                                      |            |          |        |            |
| I.  | Sel                                                                          | ect the  | corr    | ect  | answer   | fro | m th | e c                                                         | hoic                                                                   | es                                   | given      | under    | eac    | ch bit :   |
| 1.  | (b)                                                                          |          | 8.      | (d)  |          | 15. | (a)  |                                                             |                                                                        | 22.                                  | (a)        |          | 29.    | (a)        |
| 2.  | (b)                                                                          |          | 9.      | (b)  |          | 16. | (c)  |                                                             |                                                                        | 23.                                  | (b)        |          | 30.    | (a)        |
| 3.  | (b)                                                                          |          | 10.     | (b)  |          | 17. | (b)  |                                                             |                                                                        | 24.                                  | (d)        |          | 31.    | (d)        |
| 4.  | (a)                                                                          |          | 11.     | (d)  |          | 18. | (d)  |                                                             |                                                                        | 25.                                  | (c)        |          | 32.    | (d)        |
| 5.  | (c)                                                                          |          | 12.     | (c)  |          | 19. | (c)  |                                                             |                                                                        | 26.                                  | (b)        |          |        |            |
| 6.  | (a)                                                                          |          | 13.     | (d)  |          | 20. | (a)  |                                                             |                                                                        | 27.                                  | (d)        |          |        |            |
| 7.  | (d)                                                                          |          | 14.     | (c)  |          | 21. | (c)  |                                                             |                                                                        | 28.                                  | (c)        |          |        |            |

#### II. Short Questions

- Q1. Give the distinction between methyl amine and dimethyl amine.
- **Ans.** Methyl amine is a primary amine, gives carbylamine test i.e when methyl amine is heated with alcoholic solution of KOH and CHCl<sub>3</sub> gives methyl isocyanide where as dimethyl amine, a secondary amine does not give this test.

$$\begin{array}{ccc} \mathrm{CH_3NH_2} + \mathrm{CHCl_3} + 3\mathrm{KOH} & \xrightarrow{\Delta} & \mathrm{CH_3NC} + 3\mathrm{KCl} + 3\mathrm{H_2O} \\ & \mathrm{alc} & \mathrm{Methylisocyanide} \end{array}$$

$$(CH_3)_2NH + CHCI_3 + KOH \xrightarrow{\Delta} No reaction$$

- Q2. Why pK<sub>b</sub> of aniline is more than that of methyl amine?
- Ans. Aniline is an aromatic amine and the lone pair of electrons on Nitrogen are delocalized. So the electron density on nitrogen decreases. But in CH<sub>3</sub>NH<sub>2</sub>, +I effect of CH<sub>3</sub> increases the electron density on N-atom, so a stronger base than aniline. Therefore, pK<sub>b</sub> value of methyl amine is lower than aniline.
- Q3. Write the chemical reaction of aniline with benzoyl chloride and write the name of the product.

- Q4. How will you convert
  - (a) Benzene to aniline
  - (b) Acetic acid to methanamine
- **Ans.** (a) Benzene to aniline

(b) Acetic acid to methanamine

- Q5. Write notes on carbylamine reactions giving examples.
- **Ans.** Primary amine when heated with alcoholic solution of KOH and CHCl<sub>3</sub> (Chloroform) gives methyl isocyanide is known as carbylamine reaction.

$$CH_3NH_2 + KOH + CHCl_3 \xrightarrow{\Delta} CH_3NC + KCl + H_2O$$

- Q6. Write the structures of different isomers corresponds to molecular formula  $C_3H_9N$ . Write IUPAC names of the isomers which will liberate  $N_2$  gas on treatment with HNO<sub>2</sub>.
- Ans. The various isomers of C<sub>3</sub>H<sub>9</sub>N are

$$(i) \qquad CH_3-CH_2-CH_2-NH_2 \qquad \qquad (ii) \qquad CH_3-CH-CH_3 \\ Propan - 1 - amine \qquad \qquad Propan - 2 amine \\ (iii) \qquad \frac{H}{CH_3CH_2-N-CH_3} \qquad (iv) \qquad \frac{H}{CH_3} \\ N-Methyl \ ethanamine \qquad N, N-dimethyl \ Methanamine \\ (iv) \qquad \frac{N}{CH_3} \\ N, N-dimethyl \ Methanamine \\ (iv) \qquad \frac{N}{CH_3} \\ N, N-dimethyl \ Methanamine \\ (iv) \qquad \frac{N}{CH_3} \\ N, N-dimethyl \ Methanamine \\ (iv) \qquad \frac{N}{CH_3} \\ N, N-dimethyl \ Methanamine \\ (iv) \qquad \frac{N}{CH_3} \\ N = \frac{N}{$$

As primary amine can give  $N_2$  gas on treatment with  $HNO_2$ .

$$CH_3 - CH_2 - CH_2 NH_2 \xrightarrow{HNO_2} CH_3 CH_2 CH_2 OH + N_2 + H_2 O$$

$$Propan-1-ol$$

$$NH_2 CH_3 - CH - OH + N_2 + H_2 O$$

$$CH_3 - CH - CH_3 \xrightarrow{HNO_2} CH_3$$

$$Propan-2-ol$$

- Q7. What is benzoylation? Give one example.
- **Ans.** See question no. 3
- Q8. How will you distinguish between primary amine, secondary amine and tertiary amine?
- **Ans.** When amine is shaken with benzene sulphonyl chloride in presence of aqueous KOH, a primary amine gives clear solution which on acidification gives an insoluble N-alkyl benzene sulphonamide which is soluble in alkali.

Secondary amine gives N.N dialkylbenzene sulphonamide which is insoluble in alkali.

Tertiary amines do not react with Hinsberg reagent at all.

- Q9. Explain why do primary amines have higher boiling points than tertiary amines.

  Primary > Secondary > Tertiary
- **Ans.** Among amines, the primary amines have higher b.p. than corresponding secondary amines. This is due to extensive H-bonding in primary amines because of two N-H bonds in the molecule. Tertiary amines do not have N-H bond, consequently have lowest b.p. So the order is

Primary > Secondary > Tertiary

- Q10. Write short notes on Hofmann's bromamide reaction.
- **Ans.** Hoffmann's Bromamide Reaction: The primary acid amides on reaction with Br<sub>2</sub> in the presence of alkalies at about 343 K give primary amines. The amine formed in this method has one carbon atom less than the parent amide.

$$CH_3CONH_2 + Br_2 + 4KOH$$
  $CH_3NH_2 + 2KBr + K_2CO_3 + 2H_2O$ 

Q11. Give the structures of A, B and C in the following reaction.

**Ans.** 
$$CH_3COOH \xrightarrow{NH_3} GH_3CONH_2 \xrightarrow{NaOBr} CH_3NH_2 \xrightarrow{NaNO_2/HCl} GH_3OH$$
 Ethanamide Methanamine Methanol A B C

12. Give the structures of A, B and C in the following reaction.

$$\mathbf{C_6H_5N_2CI} \xrightarrow{\quad CuCN \quad} \mathbf{A} \xrightarrow{\quad H_2O/H^{\bullet} \quad} \mathbf{B} \xrightarrow{\quad NH_3 \quad} \mathbf{C}$$

- 13. Why aromatic primary amines can not be prepared by Gabriel phthalimide synthesis.
- **Ans.** Gabriel Phthalimide Synthesis shows that Phthalimide is first converted into potassium phthalimide by reaction with KOH which on further treatment with alkyl halide gives N-alkyl phalimide which on subsequent alkaline hydrolysis with NaOH gives primary amine.

But aromatic primary amines cannot be prepared because aryl halides do not undergo nucleophilic substitution reactions under ordinary conditions.

- 14. An aromatic compound 'A' on treatment with aqueous  $NH_3$  and heating forms compound 'B' which on heating with  $Br_2$  and KOH forms compound 'C' of molecular formula  $C_6H_7N$ . Write the structures and IUPAC names of compounds A, B, C.
- **Ans:** Since compound C is of M.F.  $C_6H_7N$ , is formed from 'B' on treatment with  $Br_2/KOH$  i.e Hoffmann's bromamide reaction, therefore, the compound 'B' is an amide and 'C' must be an amine. The only amine of M.F.  $C_6H_5NH_2$  (aniline). Since 'C' is an amine, the amide formed must be benzamide ( $C_6H_5CONH_2$ ) i.e. B.

$$C_6H_5CONH_2 \xrightarrow{Br_2/KOH} C_6H_5NH_2$$
  
Benzamide Benzamine

Further 'B' is formed from compound 'A' with aq  $NH_3$  and heating must be benzoic acid  $C_6H_5COOH$ .

$$\begin{array}{cccc} \textbf{C}_{6}\textbf{H}_{5}\textbf{COOH} & \xrightarrow{\text{(i) Ag, NH}_{2}} & \textbf{G}_{6}\textbf{H}_{5}\textbf{CONH}_{2} \\ & \textbf{(A)} & \textbf{(B)} \end{array}$$

15. Give the structures of A, B and C in the following reaction.

(i) 
$$CH_3CH_2I \xrightarrow{NaCN} A \xrightarrow{OH^-} B \xrightarrow{NaOH/Br_2} C$$

(ii) 
$$C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{NaNO_2+HCl} B \xrightarrow{H_2O} G$$

(iii) 
$$\langle O \rangle$$
 NH<sub>2</sub>  $\xrightarrow{NaNO_2+HCI}$  A  $\xrightarrow{HBF_4}$  B  $\xrightarrow{NaNO_2}$  Cu

(ii) 
$$C_6H_5NO_2 \xrightarrow{Fe/HCl} G_6H_5NH_2 \xrightarrow{NaNO_2/HCl} G_6H_5N_2Cl \xrightarrow{H_2O} G_6H_5OH$$
 aniline Benzenediazonium Phenol Chloride (A) (B) (C)

(iii) 
$$\bigcirc$$
-NH<sub>2</sub> NaNO<sub>2</sub>/HCI  $\bigcirc$ -N<sub>2</sub>CI HBF<sub>4</sub>  $\bigcirc$ -N<sub>2</sub>BF<sub>4</sub> NaNO<sub>2</sub>  $\bigcirc$ -NO<sub>2</sub>+BF<sub>3</sub>+NaF Benzenediazonium Benzenediazo- Nitro benzene Chloride niumfluoroborate (A) (B) (C)

#### 16. How can you convert

- Nitro-benzene to p-aminoazobenzene
- (b) 4-nitrotoluene to 2-bromo benzoic acid

Nitrobenzene to P-aminoazobenzene **Ans**.: (a)

nitrobenzene

Benzenediazonium chloride

$$\bigcirc$$
-N=N-NH- $\bigcirc$   $\xrightarrow{\Lambda}$   $\bigcirc$ -N=N- $\bigcirc$ -NH<sub>2</sub>

Diazoaminobenzene

p-aminoazobenzene

4-nitrotoluene to 2-bromobenzoic acid (b)

4-nitrotoluene

2-bromo-

3-bromo-4methyl 4-nitro toluene aniline

3-bromo-4-methyl chloride

$$\begin{array}{c|c} & \text{CH}_3 & \text{COOH} \\ \hline & \text{Red}^n & \text{O} & \text{Br} \end{array}$$

2-bromotoluene

2-bromobenzoic acid

#### 17. How can you convert

- 3- methyl aniline to 3-nitro toluene (a)
- Aniline to 1,3,5- tribomo benzene (b)
- (c) Methanamine to ethanamine

**Ans**.: (a) 3-methylaniline to 3-nitrotoluene :-

$$\bigcirc \mathsf{NH}_2 \xrightarrow{\mathsf{HNO}_2/\mathsf{HCI}} \bigcirc \mathsf{N}_2 - \mathsf{CI} \xrightarrow{\mathsf{HBF}_4} \bigcirc \mathsf{N}_2 - \mathsf{BF}_4 \xrightarrow{\mathsf{NaNO}_2/\mathsf{Cu}} \bigcirc \mathsf{NO}_2$$

3-methylaniline

3-nitrotoluene

Aniline to 1, 3, 5 tribromobenzene: (b)

$$\bigcirc \stackrel{\mathsf{NH}_2}{\bigcirc} \stackrel{\mathsf{Br}}{\longrightarrow} \stackrel{\mathsf{NH}_2}{\longrightarrow} \stackrel{\mathsf{NH}_2}{\longrightarrow}$$

1.3.5 - tribromobenzene

$$CH_{3}NH_{2} \xrightarrow{HNO_{2}} CH_{3}OH \xrightarrow{P+I_{2}} CH_{3}I \xrightarrow{KCN} CH_{3}CN \xrightarrow{Na/C_{2}H_{5}OH} CH_{3}CH_{2}NH_{2}$$
 Methanamine Methanol Methyl iodide Acetonitril ethanamine

#### 18. Arrange the following in increasing order of basic character?

(a) 
$$C_6H_5NH_2$$
,  $NH_3$ ,  $C_6H_5CH_2$ ,  $NH_2$ ,  $C_2H_5NH_2$ ,  $(C_2H_5)_2NH_2$ 

(b) 
$$C_6H_5NH_2$$
,  $C_2H_5NH_2$ ,  $(C_2H_5)_3N$ ,  $(C_2H_5)_2$  NH

(c) 
$$C_6H_5NH_2$$
,  $(CH_3)_3N$ ,  $C_6H_5CH_2NH_2$ ,  $CH_3NH_2$ ,  $(CH_3)_2NH_2$ 

**Ans.**: (a) 
$$C_6H_5NH_2 < NH_3 < C_6H_5CH_2NH_2 < C_2H_5NH_2 < (C_2H_5)_2 NH$$

(b) 
$$C_{s}H_{s}NH_{s} < C_{s}H_{s}NH_{s} < (C_{s}H_{s})_{s}N < (C_{s}H_{s})_{s}NH$$

(c) 
$$C_6H_5NH_2 < C_6H_5CH_2NH_2 < (CH_3)_3N < CH_3NH_2 < (CH_3)_2NH$$

#### 19. Write the structure and IUPAC names of

- (i) The amide which give propanamine by Hoffmann's bromamide reaction.
- (ii) The amide produced by Hoffmann degradation of benzamide

# **Ans.:** (i) Propanamine contains three carbon atoms which is formed after Hoffmann's bromamide reaction. So the amide should have 4 carbon atoms i.e.

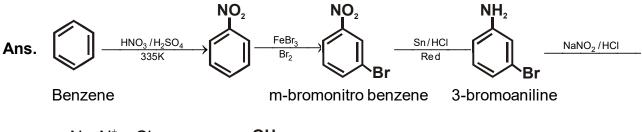
O II 
$$CH_3CH_2-CH_2-C-NH_2+Br_2+4KOH \xrightarrow{\Delta} CH_3CH_2CH_2NH_2+2KBr+K_2CO_3+2H_2O$$
 Butanamide Propanamine

(ii) Benzamide has 7 carbon atoms. The amine formed from benzamide is aromatic primary amine containing six carbon atoms i.e. aniline

Benzamide

Aniline or Benzamine

- 20. (a) Why aniline does not undergo Friedel-Craft reaction? explain.
  - (b) Why do primary amines have higher b.p than tertiary amine?
  - (c) Why aliphatic amines are stronger base than aromatic amines?
- Ans.: (a) Aniline is a Lewis base reacts with Lewis acid AlCl<sub>3</sub> to form a salt


$$C_6H_5NH_2 + AICI_3 \longrightarrow C_6H_5N^+H_2AICI_3^-$$

Lewis base Lewis acid

As a result aniline acquires a positive charge and acts as deactivating group for electrophilic substitution. Hence aniline does not undergo Friedel - Craft reaction.

- (b) Due to presence of two H-atoms on N-atom of primary amines, they undergo H-bonding where as tert amines do not have H-atom on N-atom, do not possess H-bonding. So primary amines have highest b.p. than tert amines.
- (c) Aromatic amines have resonance effect due to presence of benzene ring. As a result the lone pair of electrons on N-atom gets delocalized and less easily available for protonation. Hence aromatic amines are weaker base than aliphatic amines.

#### 21. How will you convert benzene into 3-bromophenol?



3-bromophenol

#### 22. How will you distinguish between ethylamine and aniline?

**Ans.** Aniline forms azodye with benzenediazoniumchloride but ethyl amine does not.

- 23. Diazonium salts of aromatic amines are more stable than those of aliphatic amines. Why?
- **Ans.** Benzenediazonium ion is resonance stabilised whereas alkyldiazonium salt has no such reasonance stabilisation. So aromatic amines are more stable.

#### 24. What is diazotisation?

Ans. The reaction involves conversion of primary aromatic amine (aniline) into benzenediazonium salt by treatment with NaNO<sub>2</sub>/HCI (nitrous acid) at low temperature.

$$NH_2 = \frac{NaNO_2/HCI}{278-280K}$$
  $N_2^+CI^- + NaCI + H_2O$ .

25. Write the structures of A, B, C of the reaction:

Ans. 
$$C_6H_5NO_2 \xrightarrow{Fe/HCl} C_6H_5NH_2 \xrightarrow{HNO_2} C_6H_5N = N - Cl \xrightarrow{H_2O/H^+} G_6H_5OH$$
 aniline benzene diazonium chloride Phenol (A) (B) (C)

- 26. Complete the following reactions:
  - (i)  $C_6H_5N_2CI + H_3PO_2 + H_2O \rightarrow$

(ii) 
$$C_6H_5N_2CI - \frac{HBF_4}{NaNO_3/C\Delta}$$

**Ans.** (i) 
$$C_6H_5N_2CI + H_3PO_2 + H_2O \rightarrow C_6H_6 + N_2 + H_3PO_3 + HCI$$

(ii) 
$$C_6H_5N_2CI \xrightarrow{HBF_4} C_6H_5NO_2$$

nitro benzene

#### 27. Why are benzene diozonium salts soluble in water?

**Ans.** Being ionic, they are soluble in water.

#### 28. What is Sandmeyer's reaction?

**Ans.** The reaction of diazonium salt with CuCl/HCl to give the corresponding chloroarene is called Sandmeyer's reaction.

#### 29. How is phenyl hydrazine prepared from aniline?

**Ans.** By reduction of benzenediazonium chloride with  $SnCl_2/HCl$  or  $Na_2SO_3$ .

#### 30. What is a coupling reaction?

**Ans.** The reaction of diazonium salts with phenols in basic medium and with amines in acid medium to give the corresponding azodyes is called the coupling reaction.

### UNIT - X

### **BIOMOLECULES**

|    |                                                    |                               |       | DIOMOLL          | -00   |                                                                    |                                                                  |       |            |  |  |  |
|----|----------------------------------------------------|-------------------------------|-------|------------------|-------|--------------------------------------------------------------------|------------------------------------------------------------------|-------|------------|--|--|--|
| I. | Sel                                                | ect the cor                   | rect  | answer from th   | ne ch | oice                                                               | s given un                                                       | der e | each bit : |  |  |  |
| 1. | A nano peptide contains how many peptide linkage ? |                               |       |                  |       | The bonds in protein structure that are not broken on denaturation |                                                                  |       |            |  |  |  |
|    | (a)                                                | 10                            | (b)   | 8                |       | (a)                                                                | hydrogen bo                                                      | nd    |            |  |  |  |
|    | (c)                                                | 9                             | (d)   | 18               |       | (b)                                                                | peptide bon                                                      | d     |            |  |  |  |
| 2. | Whi                                                | ch of the fo                  | ollow | ing exists in    |       | (c) ionic bond                                                     |                                                                  |       |            |  |  |  |
|    | Zwit                                               | tter ionic forn               | n ?   |                  |       | (d) disulphide bond                                                |                                                                  |       |            |  |  |  |
|    | (a)                                                | alkaline                      | (b)   | glucose          | 8.    | The phenomenon of mutarotation is                                  |                                                                  |       |            |  |  |  |
|    | (c)                                                | fructose                      | (d)   | ethanamide       |       | not                                                                | exhibited by                                                     | •     |            |  |  |  |
| 3. | Whi                                                | ch of the foll                | owin  | g biomolecule    |       | (a)                                                                | glucose                                                          | (b)   | fructose   |  |  |  |
|    |                                                    | •                             |       | tion with Cu²+   |       | (c)                                                                | sucrose                                                          | (d)   | maltose    |  |  |  |
|    |                                                    |                               | ur w  | ith nin-hydrin   | 9.    | Which of these is not found in                                     |                                                                  |       |            |  |  |  |
|    | solution ?                                         |                               |       |                  |       | nucleotides ?                                                      |                                                                  |       |            |  |  |  |
|    | (a)                                                | aldehyde                      | (b)   | lpha -amino acid |       | (a)                                                                | guanine                                                          | (b)   | cytosine   |  |  |  |
|    | (c)                                                | carbohydrate                  | e (d) | DNA              |       | (c)                                                                | adenine                                                          | (d)   | tyrosine   |  |  |  |
| 4. |                                                    | ch among the<br>nomer of star |       | llowing is the   | 10.   | Which of the following does no undergo hydrolysis?                 |                                                                  |       |            |  |  |  |
|    | (a)                                                | glucose                       | (b)   | sucrose          |       | (a)                                                                | glucose                                                          | (b)   | cellulose  |  |  |  |
|    | (c)                                                | protein                       | (d)   | lactose          |       | (c)                                                                | cane sugar                                                       | (d)   | maltose    |  |  |  |
| 5. | 5. Which of the following is/a reducing sugars?    |                               |       |                  | 11.   |                                                                    | Which of the following is monosaccharide?                        |       |            |  |  |  |
|    | (a)                                                | sucrose                       | (b)   | fructose         |       | (a)                                                                | sucrose                                                          | (b)   | galactose  |  |  |  |
|    | (c)                                                | starch                        | (d)   | cellulose        |       | (c)                                                                | maltose                                                          | (d)   | lactose    |  |  |  |
| 6. | The                                                | Carbon At                     | oms   | involved in      | 12.   | Whi                                                                | Which of the following carbohydrate is most abundant in nature ? |       |            |  |  |  |
|    | osa                                                | zone formati                  | on ar | e                |       | is m                                                               |                                                                  |       |            |  |  |  |
|    | (a)                                                | 1 and 2                       | (b)   | 2 and 3          |       | (a)                                                                | glucose                                                          | (b)   | fructose   |  |  |  |

(c) cellulose (d) starch

(c) 3 and 4 (d) 5 and 6

### 13. Which gives red colour with Fehling's Solution?

- glucose
- (b) cellulose
- (c) benzaguinone
- (d) cane sugar

#### On hydrolysis, proteins give

- nucleotides (b) nucleosides
- (c) amides (d) amino acids

### The change in optical rotation with time of freshly prepared solutions of sugar is known as

- (a) specific rotation
- (b) inversion
- (c) rotatory motion
- (d) mutarotation

#### 16. Which of the following carbohydrates is used in silvering of mirror?

- (b) Cellulose (a) Sucrose
- (c) Fructose (d) Glucose

#### **17**. Helical structure of proteins is stabilized by

- (a) ionic bond
- (b) covalent bond
- (c) vanderwaal's forces
- (d) hydrogen bond

#### 18. Glucose and fructose are

- (a) optical isomers
- functional isomers (b)
- (c) chain isomers
- (d) position isomes

### 19. The number of chiral carbon atoms in $\beta$ -D(+) glucose molecule is

- (b)
- (c) 4
- (d) 6

### Glucose with excess of phenyl hydrazine forms

- (a) fructosazone
- glucose phenyl hydrazone (b)
- (c) glucosazone
- phenyl hydrazone of glucosazone

### 21. Protein is an important constituent of our diet. It functions mainly as

- (a) source of energy
- (b) a construction material
- shock absorber (c)
- (d) reserve food

#### The coagulation of protein is called 22.

- dehydration (b) decay (a)
- deamination (d) (c) denaturation

#### Which one of the following is a 23. disaccharide?

- starch (a)
- (b) lactose
- (c) cellulose
- (d) fructose

#### 24. A protein is best described as a

- (a) poly amide
  - (b) polyester
- poly peptide (d) poly urethane

#### $\alpha$ -D(+) - glucose and $\beta$ -D(+) 25. - glucose are called

- geometrical isomers
- (b) anomers
- (c) enantiomers
- (d) epimers

| 26. | The number of amino acids which form proteins in nature are about |                          |         |                                     | 32. | Glucose and Fructose can also be distinguished by |                                                    |        |              |  |  |
|-----|-------------------------------------------------------------------|--------------------------|---------|-------------------------------------|-----|---------------------------------------------------|----------------------------------------------------|--------|--------------|--|--|
|     | (a)                                                               | 6                        | (b)     | 10                                  |     | (a)                                               | molisch test                                       |        |              |  |  |
|     | (c)                                                               | 15                       | (d)     | 20                                  |     | (b)                                               | acetylation                                        |        |              |  |  |
| 27. |                                                                   | -                        |         | ution in which                      |     | (c)                                               | conc solution of NaOH                              |        |              |  |  |
|     | •                                                                 |                          |         | es not migrate<br>ectrical field is |     | (d)                                               | phenyl hydrazine                                   |        |              |  |  |
|     | calle                                                             |                          | OI CIC  |                                     | 33. | Which of the following is a protein?              |                                                    |        |              |  |  |
|     | (a)                                                               | iso electric p           | ooint   |                                     |     | (a)                                               | Nylon                                              | (b)    | Natural silk |  |  |
|     | (b)                                                               | iso electroni            | ic poir | nt                                  |     | (c)                                               | Rayon                                              | (d)    | Teryline     |  |  |
|     | (c)                                                               | neutralizatio            | n       |                                     | 34. | Pro                                               | Proteins give purple colour w                      |        |              |  |  |
|     | (d)                                                               | none of the              | above   | •                                   |     | (a)                                               | Benedict's Solution                                |        |              |  |  |
| 28. | The                                                               | protein v                | vhich   | n transports                        |     | (b)                                               | lodine Solution                                    |        |              |  |  |
|     | oxygen is the blood stream is                                     |                          |         |                                     |     | (c)                                               | Ninhydrin Reagent                                  |        |              |  |  |
|     | (a)                                                               | haemoglobi               | n (b)   | insulin                             |     | (d)                                               | Biuret                                             |        |              |  |  |
|     | (c)                                                               | collagen                 | albumin | 35.                                 | Bas | ses common to RNA and DNA are                     |                                                    |        |              |  |  |
| 29. |                                                                   |                          |         | wing base is<br>d not in DNA ?      |     | (a)                                               | adenine, guanine, cytosine                         |        |              |  |  |
|     | (a)                                                               | thiamine                 | (b)     | guanine                             |     | (b)                                               | adenine, uracil, cytosine                          |        |              |  |  |
|     | (c)                                                               | uracil                   | (d)     | adenine                             |     | (c)                                               | adenine, gua                                       | anine, | thymine      |  |  |
| 30. | At ti                                                             | ne iso electri           | c poin  | nt, amino acids                     |     | (d)                                               | d) guanine, uracil, thymine                        |        |              |  |  |
|     | are                                                               | present as               |         |                                     | 36. | In n                                              | In nucleic acids, the sequenc                      |        |              |  |  |
|     | (a)                                                               | H <sub>2</sub> N . CHR . | COO     | H                                   |     | (a)                                               | base, phosphate, sugar                             |        |              |  |  |
|     | (b)                                                               | H <sub>3</sub> N⁺CHRC    | OO-     |                                     |     | (b)                                               | base, sugar, phosphate                             |        |              |  |  |
|     | (c)                                                               | H <sub>3</sub> N⁺CHRC0   | HOC     |                                     |     | (c)                                               | sugar, base,                                       | phos   | phate        |  |  |
|     | (d)                                                               | H <sub>2</sub> NCHRCC    | )O-     |                                     |     | (d)                                               | phosphate, l                                       | oase,  | sugar        |  |  |
| 31. | The most important energy carrier in the living cell is           |                          |         |                                     |     |                                                   | Which of the following contain a transition metal? |        |              |  |  |
|     | (a)                                                               | AMP                      | (b)     | ADP                                 |     | (a)                                               | Chlorophyll                                        | (b)    | Haemoglobin  |  |  |
|     | (c)                                                               | UDP                      | (d)     | ATP                                 |     | (c)                                               | Vitamin                                            | (d)    | DNA          |  |  |
|     |                                                                   |                          |         |                                     |     | ` ,                                               |                                                    | ` '    |              |  |  |

### 38. The letter 'D' and 'L' in carbohydrates represent

- (a) its optional rotation
- (b) its mutarotation
- (c) its direct synthesis
- (d) its configuration

### 39. Carbohydrates are used by body mainly

- (a) for obtaining vitamins
- (b) as a source of energy
- (c) for building muscles
- (d) for all its developmental needs

### 40. The number of asymmetric carbon atoms in fructose are

- (a) 2
- (b) 3
- (c) 4
- (d) 5

### 41. Which one of the following is the reagent used to identify glucose?

- (a) Neutral FeCl<sub>3</sub>
- (b) CHCl<sub>3</sub> and alc. KOH
- (c) Ammoniacal AgNO<sub>3</sub>
- (d) CH<sub>5</sub>ONa

#### 42. Charring of sugar is due to

- (a) oxidation
- (d) reduction
- (c) dehydration
- (d) reduction & hydration

#### 43. On hydrolysis of starch, we finally get

- (a) glucose
- (b) fructose
- (c) both glucose & fructose
- (d) sucrose

# 44. The aqueous solution of carbohydrate gave a dark blue colour with iodine solution, the carbohydrate is

- (a) glucose
- (b) fructose
- (c) sucrose
- (d) starch

#### 45. The glucose is an example of

- (a) disaccharide
- (b) aldohexose
- (c) ketohexose
- (d) none of these

### 46. Which carbohydrate is an essential constituent of plant cells?

- (a) Starch
- (b) Cellulose
- (c) Sucrose
- (d) Vitamins

## 47. The reason for double helical structure of DNA is operation of

- (a) hydrogen bonding
- (b) electrostatic attraction
- (c) Vander Waal's force
- (d) dipole-dipole interaction

### 48. The conversion of maltose to glucose is possible by the nzyme

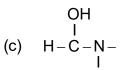
- (a) Zymase
- (b) Lactase
- (c) Maltase
- (d) Diastase

### 49. Which of the following amino acid is optically active

- (a) phenyl alanine
- (b) glycine
- (c) glutamic acid
- (d) asparagine

- 50. A compound gives negative test with ninhydrin and positive test with Benedict's solution. The compound is
  - (a) a lipid
  - (b) a protein
  - (c) an amino acid
  - (d) a mono saccharids
- 51. The essential amino acids are
  - (a) glycine
- (b) alanine
- (c) valine
- (d) cysteine
- 52. Glucose does not react with
  - (a) NH<sub>2</sub>OH
- (b) HCN
- (c) NaHSO<sub>3</sub>
- (d)  $NH_3$
- 53. Glucose is stored in our body as
  - (a) carbohydrates
  - (b) fats
  - (c) glycogen
  - (d) lipid
- 54. DNA multiplication is called
  - (a) translation (b
- (b) transduction
  - (c) transcription (d) replication
- 55. How can you say that glucose is a cyclic compound?
  - (a) Glucose undergoes reaction with Tollen's reagent
  - (b) Glucose reacts with phenyl hydrazine
  - (c) Glucose fails to react with sodium bisulphite
  - (d) Glucose reacts with nitric acid

- 56. The sweetest carbohydrate is
  - (a) Sucrose
- (b) Glucose
- (c) Fructose
- (d) Lactose
- 57. Which of the following is the first member of monosaccharides?


(a) 
$$O$$
  $II$   $CH_2OH-C-CH_2OH$ 

- (b) HOCH<sub>2</sub> CHOH CHO
- (c)  $OHCH_2$  CHOH CHOH CHO

- 58. A carbohydrate is treated with  $\alpha$ -naphthol and conc.  $H_2SO_4$ . What colour will be formed at the junction of two liquids ?
  - (a) Blood red (l
    - (b) Violet
  - (c) Brown
- (d) Orange
- 59. Milk changes into \_\_ after digestion.
  - (a) Cellulose
- (b) Fructose
- (c) Glucose
- (d) Lactose
- 60. In alkaline medium, glycine predominately exists as a/an
  - (a) cation
- (b) anion
- (c) zwitter ion
- (d) covalent form
- 61. Denaturation of protein leads to loss of its biological activity by
  - (a) formation of amino acids
  - (b) loss of primary structure
  - (c) loss of both primary and secondary structures
  - (d) loss of both secondary and tertiary structures

- 62. At pH = 4, glycine exists as
  - (a)  $H_3N^+ CH_2 COO^-$
  - (b)  $H_3N^+ CH_2 COOH$
  - (c)  $H_2N CH_2 COOH$
  - (d)  $H_2N CH_2 COO^{-1}$
- 63. The purine base present in RNA is
  - (a) guanine
- (b) cytosine
- (c) uracil
- (d) thymine
- 64. Which one of the following statements about amino acids is not true?
  - (a) They are constituents of all proteins
  - (b) They are all high melting solids
  - (c) Most naturally occurring amino acids have D-configuration
  - (d) They are characterized by iso electric point
- 65. The secondary structure of protein refers to
  - (a)  $\alpha$ -helical backbone
  - (b) Hydrophobic interactions
  - (c) Sequence of  $\alpha$ -amino acids
  - (d) Fixed configuration of the poly peptide backbone
- 66. Monomer of nucleic acid is
  - (a) Nucleotide
- (b) Nucleosides
- (c) Amino Acids (d) Carboxylic Acid
- 67. Which one is not a constituent of nucleic acid?
  - (a) Uracil
  - (b) Guanidene
  - (c) Phosphoric Acid
  - (d) Ribose Sugar

- 68. The function of DNA in an organism is
  - (a) to assist in the synthesis of RNA molecule
  - (b) to store information of heredity characteristics
  - (c) to assist in the synthesis of proteins and polypeptides
  - (d) All of the above
- 69. A sequence of how many nucleotides in messenger RNA make a codon for an amino acid?
  - (a) Three
- (b) Four
- (c) One
- (d) Two
- 70. The presence and absence of hydroxy group on which carbon atom of sugar differentiates RNA and DNA?
  - (a) First
- (b) Second
- (c) Third
- (d) Fourth
- 71. Which one is correct representation of peptide bond?



(d) None of these

| 72. | $\alpha$ -D-glucose and $\beta$ -D-glucose are |                                           | 76. | Which of the following is Vitamin C?                        |                                       |             |                           |                             |  |
|-----|------------------------------------------------|-------------------------------------------|-----|-------------------------------------------------------------|---------------------------------------|-------------|---------------------------|-----------------------------|--|
|     | <del></del> -                                  |                                           |     | <ul><li>(a) Citric acid</li><li>(b) Aspartic acid</li></ul> |                                       |             |                           |                             |  |
|     | (a)                                            | Epimers                                   |     | (c)                                                         |                                       |             |                           |                             |  |
|     | (b)                                            | Anomors                                   |     | (d) Adipic acid                                             |                                       |             |                           |                             |  |
|     | (c)                                            | Enantimomers                              | 77. | Wh                                                          | _                                     | of          | the                       | following                   |  |
|     | (d)                                            | Structural isomers                        |     |                                                             | /saccl<br>nimal                       |             | es is stored in the liver |                             |  |
| 73. | Nucleic acids are polymers of                  |                                           |     | (a)                                                         | Glyc                                  | ogen        | (b)                       | Amylopectin                 |  |
|     | (a)                                            | Nucleosides                               |     | (c)                                                         | Cellu                                 | ulose       | (d)                       | Amylose                     |  |
|     | (b)                                            | Peptides                                  | 78. | Whi                                                         | Which of the following bases is not   |             |                           |                             |  |
|     | (c)                                            | Nucleotides                               |     | present in RNA?                                             |                                       |             |                           |                             |  |
|     | (d)                                            | lpha -Amino acids                         |     | (a)                                                         | Ader                                  | nine        | (b)                       | Uracil                      |  |
| 74. |                                                | Which of the following statements         |     | (c)                                                         | Cyto                                  | sine        | (d)                       | Thyamine                    |  |
| 74. | is not correct about glucose?                  |                                           | 79. | Which of the following bases is not present in DNA?         |                                       |             |                           |                             |  |
| 75. | _                                              |                                           |     |                                                             |                                       |             |                           |                             |  |
|     | (a)                                            | It is an aldohexose                       |     | (a)                                                         | Cyto                                  | sine        | (b)                       | Uracil                      |  |
|     | (b)                                            | It exists in pyranose form                |     | (c)                                                         | Ader                                  | nine        | (d)                       | Thiamine                    |  |
|     | (c)                                            | On heating with HI it forms I-iodohexane  | 80. | Nuc                                                         | ıcleotide units in a nucleic acid are |             |                           |                             |  |
|     | (d)                                            | It is dextrorotatory                      |     | linked through                                              |                                       |             |                           |                             |  |
|     |                                                |                                           |     | (a)                                                         | Glycoside linkage                     |             |                           |                             |  |
|     | On hydrolysis one molecule of sucrose gives    |                                           |     | (b)                                                         | Phosphodiester linkage                |             |                           |                             |  |
|     |                                                |                                           |     | (c)                                                         | Peptide linkage                       |             |                           |                             |  |
|     | (a)                                            | 2 molecules of fructose                   |     | (d)                                                         | d) Heterocyclic linkage               |             |                           |                             |  |
|     | (b)                                            | 2 molecules of glucose                    | 81. |                                                             | hor                                   |             |                           | helps in the<br>lucose into |  |
|     | (c)                                            | one molecule each of glucose and ribose   |     | glyd                                                        | ogen                                  | is:         |                           |                             |  |
|     | (d)                                            | one molecule each of glucose and fructose |     | (a)<br>(c)                                                  | insul<br>bile                         | in<br>acids | (b)                       | adrenaline<br>cortisone     |  |

### ANSWER KEYS

#### Select the correct answer from the choices given under each bit : I.

1. (b) 17. (d) 33. (b) 49. (b) 65. (a) 66. (a) 2. 18. (b) 34. (c) 50. (d) (d)

35.

36.

3.

4.

14.

(d)

(b)

(a)

19. (c)

20. (c)

30.

(b)

68. (d)

(a)

(b)

51. (c)

52. (c)

67.

79.

(b)

(b)

69. (a)

5. 37. 53. (c) (b) 21. (b) (b)

70. (b) 22. (d) 38. (d) 54. (d) 6. (a)

71. (b) 7. (b) 23. (b) 39. (b) 55. (c)

72. (b)

40. 8. 24. (b) 56. (c) (c) (c) 73. (c)

41. 9. (d) 25. (b) (c) 57. (b)

74. (c)

10. (a) 26. (d) 42. (c) 58. (b) 75. (d)

11. (b) 27. 43. (a) 59. (a) (c) 76. (c)

12. 44. (d) 60. (b) (c) 28. (a)

77. (a)

13. (a) 29. (c) 45. (b) 61. (d) 78. (d)

62. (b)

(b)

46.

(d) (d) 47. (a) 63. (a) 15. 31. 80. (b)

48. 16. (d) 32. (c) (c) 64. (c) 81. (a)

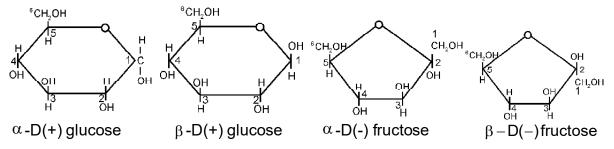
#### **II.** Short Questions

#### 1. What is structural feature characterizing reducing sugar?

**Ans.** The reducing sugars contain aldehyde group (- CHO) e.g Glucose, Mannose, Galactose etc. or  $\alpha$ -Keto group (-CO-CH<sub>2</sub>OH) like fructose.

### 2. Define mono saccharides. What is the main difference between the anomers of glucose?

**Ans.** Monosaccharides are simple carbohydrates which cannot be hydrolysed to smaller molecules. The general formula is  $(CH_2O)_n$  where n = 3 to 7 carbon atoms.


Glucose shows open chain structure as well as 5 or 6 numbered cyclic structures containing an oxygen atom. D-glucose exists as  $\alpha$  and  $\beta$  forms which differ in configuration only around C<sub>1</sub> called anomers and C<sub>1</sub> carbon is called anomeric carbon.

#### 3. Explain mutarotation taking place in D-glucose.

Ans. The  $\alpha$ -D(+) glucose has specific rotation +111° and  $\beta$ -D(+) glucose has specific rotation 19.2°. Both the forms are stable in aqueous sodium, but each form slowly changes into an equilibrium mixture of both. It is seen that the specific rotation of  $\alpha$ -D(+) glucose falls gradually from +111° to + 52.5° with time and  $\beta$ -D(+) glucose increases from 19.2° to 52.5°. This spontaneous change in specific rotation of optically active compound with time to an equilibrium value is called 'muta rotation'.

#### 4. How does glucose differ from fructose?

**Ans.** Glucose has two isomers having  $\alpha - D(+)$  and  $\beta - D(+)$ . Similarly fructose has two isomers  $\alpha - D(-)$  &  $\beta - D(-)$ .



Glucose is pyranose structure where as fructose is furanose structure.

#### 5. Why glucose does not give 2-4 dinitrophenyl hydrazine test?

**Ans.** Glucose does not give 2,4 dinitro phenyl hydrazine test, which shows that the -CHO gr is not free but combines with C<sub>5</sub>-OH form hemiacetal. This cyclic structure of hemiacetal form cannot disturb the equilibrium to generate more open chain form from the cyclic form. Hence it does not react with 2,4 DNP.

#### 6. What is the significance of 'D' and '+' for glucose?

**Ans.** The letter 'D' in D(+) glucose indicates that  $C_5$  - OH group is oriented towards right while the sign (+) indicates that glucose is dextrorotatory.

#### 7. How is it explained the amphoteric nature of amino acid?

Ans. Amino acids contain an acidic (-COOH gr) and a basic (-NH<sub>2</sub>) gr. in the same molecule. In aqueous solution, they neutralise each other. -COOH gr. loses H<sup>+</sup> ion and - NH<sub>2</sub> accepts it, as a result they are dipolar or Zwitter ion. The <sup>+</sup>NH<sub>3</sub> gr acts as acid and -COO<sup>-</sup> gr acts as base. Therefore, amino acids are amphoteric.

#### 8. What are enzymes?

**Ans.** Enzymes are biological catalysts. Different biological system needs different enzyme. They are very specific and efficient in their action. They acts at optimum temperature and atmospheric pressure.

#### 9. How are vitamins classified?

**Ans.** Vitamins are classified as two groups (i) Water soluble vitamins and (ii) Fat soluble vitamins. Water vitamins include Vitamin B Complex, Vitamin C.. Fat soluble vitamins include Vitamin A, D, E and K. They are stored in liver and adipose tissues.

#### 10. What is nuclcoside?

Ans. A nucleoside consists of two components a nitrogenous base (purine and pyrimidine) and a five carbon sugar (ribose or deoxyribose). It is obtained when the nitrogenous base is attached to  $C_1$  of sugar by a  $\beta$ -linkage. A nucleoside is represented as base-sugar. They are adenosine, cytidine etc.

#### 11. What are the constituents of starch?

**Ans.** Amylose and amylopectin are constituents of starch.

#### 12. What happens when protein is denatured?

**Ans.** When protein is denatured, it loses its biological activity due to changes in the secondary and tertiary structures.

#### 13. What are reducing sugars?

**Ans.** Sugar which reduces Tollen's reagent and Fehling's solution are known as reducing Sugars. Glucose, Fructose, Galactose, Mannose, Maltose, Lactose are reducing sugars.

#### 14. What is inversion of sugar?

**Ans.** Sucrose (cane sugar) on hydrolysis gives D(+) glucose and D(-) fructose Surcose is dextrorotatory, D(+) glucose is dextrorotatory but D(-) fructose is laevorotatory. The change in specific rotation from dextrorotatory (from sucrose) to laevorotatory (glucose and fructose) is called inversion of sugar.

#### 15. What are bio-molecules?

**Ans.** The complex organic molecules such as carbohydrates, proteins, lipids, nucleic acids etc. which form the basis of life i.e. which build up living organisms and are also required for their growth and maintenance are called 'biomolecules'.

#### 16. Discuss primary and secondary structures of nucleic acids.

Ans. Nucleic acids are polynucleotides and are formed by thousand molecules of nucleotides with the elimination of water molecules. During this polymerization the <sup>5</sup> CH<sub>2</sub> – OH hydroxy group of the sugar residue of one nucleotide combines with one of the -OH groups of the phosphoric acid at C<sub>3</sub>' of the other nucleotide to form a long poly nucleotide chain. The back bone consists of alternating sugar phosphate residue, each sugar on this backbone is further connected to one of the four nitrogenous bases. This chain is called the Primary Structure.

In secondary structure of nucleic acid, the base composition is DNA. It consists two right handed poly nucleotide strands, run in opposite directions giving a double helix structure.

The two strands are complementary and not identical. The base pairs of two strands are linked together through H-bonds. H-bonding is taking place between specific bases. A purin base of one strand is paired with a pyrimidine base of the other strand. The possible pairings of DNA are guanine (G) and cytosine (C) through three H-bonds and between adenine (A) and thiamine (T) through two H-bonds. On heating two strands of DNA separate from each other. On cooling they hybridise. Like DNA, RNA has single strand.

#### 17. What are vitamins? Which vitamin difficiencies cause night blindness?

**Ans.** Vitamins are group of bio molecules (other than fats, carbohydrates and proteins) which are required in small amounts for normal metabolic processes and for the life, growth and health of human beings and animal organisms.

The deficiency of Vitamin A causes night blindness.

#### 18. What are the functions of DNA?

**Ans.** There are two important functions of DNA, these are (i) Replication and (ii) Protein synthesis.

The process by which a single DNA molecule produces two identical copies of itself is called Cell Division (mitosis) or replication.

Proteins are synthesized by RNA molecules in the cell, but the message for synthesis of a particular protein is coded in DNA. The three types of RNA molecules are (i) messenger RNA (m-RNA), ribosomal RNA (r-RNA) and transfer RNA (t-RNA).

#### 19. What are complementary nature of two DNA strands?

Ans. See question no. - 16

#### 20. How are proteins related to amino acids?

Ans. Proteins are polymers of  $\alpha$ -amino acids. Like peptides the amino acid units in proteins are held up by peptide (-CONH-) linkage. The polymeric products of  $\alpha$ -amino acids with molecular mass up to 10,000 are called poly peptides while those having molecular mass more than 10,000 are considered as proteins.

#### 21. What are essential and non-essential amino acids?

**Ans.** Amino acids which the body can not synthesize are called essential amino acid e.g phenylalanines, valine, leucine, isoleucine, methionine, tryptophan, threonine, lysine, orginine and histidine (10 amino acids) are essential amino acids.

The ten amino acids which the body can synthesize are called non-essential or dispensable amino acids. They are glycine, alanine, serine, cysteine, aspargine, glutamine, threonine, tyrosine, aspartic acid, glutamic acid.

#### 22. Write the reaction of glucose converted to gluconic acid.

**Ans.** Glucose on oxidation with Br<sub>2</sub> water gives gluconic acid.

$$HOH_2C - (CHOH)_4 - CHO + [O] \xrightarrow{Br_2 Water} \rightarrow HOCH_2 - (CHOH)_4 - COOH$$
 gluconic acid

This confirms the presence of -CHO gr. in glucose.

#### 23. What are the main differences between $\alpha$ and $\beta$ forms of glucose ?

**Ans.** See question No. 4.

#### 24. What are reducing and non-reducing sugars?

- **Ans.** Carbohydrates which reduce Tallen's reagent and Fehling solution are called reducing sugars, while those which do not reduce these are called non-reducing sugars eg. Glucose, Fructose are reducing and sucrose is non-reducing sugar.
- 25. Give an example of aldohexose.
- Ans. Glucose.
- 26. What is hydrolysis product of sucrose.
- **Ans.** Sucrose \_\_hydrolysis \_\_ Glucose + Fructose.
- 27. What type of linkages are responsible for the formation of primary structure of proteins?
- **Ans.** Primary structure of proteins arises due to peptide bonds (-CO-NH-bonds) between various constituents of amino acids.
- 28. Give the name and structure of optically inactive  $\alpha$ -amino acid.

Ans. Glycine: 
$$H_2N-C-COOH$$
 . H

#### 29. Write the differences of DNA and RNA.

Ans. The differences of DNA and RNA are:

- (i) In DNA, sugar is deoxyribose while in RNA it is ribose.
- (ii) Thiamine base is present in DNA while Uracil is present in RNA.
- (iii) DNA exist as double helix where as RNA exist as single strand.
- 30. What type of bonding helps in stabilising the  $\alpha$ -helix structure of proteins?
- Ans. There is intramolecular H-bonding between NH group of each amino acid residue with >C=0 of an adjacent turn of the helix.

#### 31. The strands in DNA are not identical but are complementary. Explain.

**Ans.** DNA is a double helix in which the two strands of DNA are held by H-bonds between the bases on the two strands. Thymine (T) pairs with adenine through two H-bonds and Cytosine (C) pairs with guanine (G) through three H-bonds.

Therefore, opposite of each adenine (A) on one strand there is always a thymine on the otherhand and opposite guanine, there is cytosine, which means that the two strands of DNA are complimentary to each other.

#### 32. What are different types of RNA in the cell?

**Ans.** There are three types of RNA in the cell. These are messenger RNA (m-RNA), ribosonal RNA (r-RNA) and transfer RNA (t-RNA).

#### 33. What are peptides?

Peptides are the products formed by the condensation of two or more aminoacids through their amino and carboxylic groups involving elimination of water molecules. The linkage (-CO-NH-) which unites various amino acid units in a peptide molecule is called peptide linkage or peptide bond.

\*\*\*

